
1 Introduction

Diagnosing a disease in a patient or singling our a fault
in a complex device has often been considered a hard task
requiring a signiÞcant amount of competence and experi-
ence. So, it is not surprising that diagnosis has been one
of the main tasks (probably the most relevant) investigated
when the Þrst knowledge-based systems (KBS) have been
developed in the late seventies. KBS supporting medical
diagnosis have played a major role not only to make popu-
lar the adoption of production rules but also to develop the
notion itself of frames. If we look carefully at these diag-
nostic systems we realize that in most cases the knowledge
is represented as patterns of the form

Symptoms ⇒ Diagnostic hypothesis

In many cases the relations are much more complex in-
volving a number of intermediate conclusions and in some
cases also a taxonomy of diagnostic hypotheses. An in-
depth analysis of the structure of these diagnostic systems
showed that diagnosis has been reduced to classiÞcation,
that is the goal of the diagnostic system is to identify the
diagnostic hypothesis which is better supported by the data
available for the speciÞc diagnostic case. In particular, [13]
showed that many of the early diagnostic systems follow a
pattern called Heuristic classiÞcation.

While this approach has resulted very successful in
some domains, there are a number of open questions con-
cerning the ability of handling multiple faults, of dealing
with symptom masking (two faults may compensate each
other so that symptoms are cancelled), of taking into con-
sideration the evolution of the faults.

In the second half of eighties a number of pioneers
started to propose a quite different approach to diagnosis:
instead of exploiting knowledge coming from human ex-
perts, they proposed to use a model of the system to be
diagnosed. Since then the notion of Model-Based Diagno-
sis (MBD) has been introduced (see [27] for an overview
of the work done in the Þrst years and the special issue of
AI Mag. for recent developments [1]). While the notions

of model can be quite diverse (see following paragraph),
in most cases the model was intended to be a qualitative
model of the behavior of the system, relating variables
corresponding to the status of components of the systems,
their internal states, inputs and outputs. Given such mod-
els, predictions of the system behavior can be generated.
Thus, the diagnostic task consists in evaluating whether
there is some discrepancy between the actual values of the
observations and the values of the observations predicted
by the model when the inputs are known and the health
status of the system is OK. If such a discrepancy is singled
out, then the diagnostic process has to single out which
parts (or components) of the system are faulty and which
is (are) the speciÞc fault(s).

The goal of the diagnostic process can then be articu-
lated more precisely: we can distinguish among fault de-
tection (automatic detection of deviations from the nomi-
nal behavior), fault localization (singling out one or more
components where the fault is localized) and fault identiÞ-
cation (singling out the speciÞc fault).

Let us introduce the notions of model and diagnosis by
means of a simple example: an AND gate in a digital cir-
cuit. The basic knowledge about its behavior can be rep-
resented by means of a set of clauses (see Þgure 1). The
Þrst clause can be read as: for any X that is an AND gate
and that is not faulty (OK(X)) and whose two inputs have
value 0, then the output of X has value 0. The following
three clauses complete the description of the behavior of
any AND gate when the gate behaves nominally. The nom-
inal behavior is essential for fault detection. Let us assume
that in a speciÞc AND gate A1 the two inputs have value 0
and 1 respectively ( i.e., In1(A1, 0) and In2(A1, 1)). By
using the model of the generic gate AND we can infer that
expected value of A1 is 0 (i.e., Out(A1, 0)). If we have
observed (measured) that Out(A1, 1) there is discrepancy
so a fault has been detected. If one has at disposal just the
model of the nominal behavior, the only conclusion is not
OK(A1), that is the A1 does not behaves properly. How-
ever, if one has at disposal the fault model of a generic
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AndG(X ) ∧ OK (X ) ∧ In1 (X , 0 ) ∧ In2 (X , 0 ) ⇒ Out(X , 0 )
AndG(X ) ∧ OK (X ) ∧ In1 (X , 1 ) ∧ In2 (X , 0 ) ⇒ Out(X , 0 )
AndG(X ) ∧ OK (X ) ∧ In1 (X , 0 ) ∧ In2 (X , 1 ) ⇒ Out(X , 0 )
AndG(X ) ∧ OK (X ) ∧ In1 (X , 1 ) ∧ In2 (X , 1 ) ⇒ Out(X , 1 )
AndG(X ) ∧ Sa0 (X ) ⇒ Out(X , 0 )
AndG(X ) ∧ Sa1 (X ) ⇒ Out(X , 1 )

Figure 1: the nominal and faulty model of an AND gate

AND gate, also the step of fault identiÞcation is possible.
In particular, Þgure 1 reports the faulty behavior when the
AND gate is ÒStuck at 0Ó (represented by the predicate
Sa0(X)) or is ÒStuck at 1Ó (Sa1(X)). Coming back to
the case of A1, it is easy to see that the detected discrep-
ancy between the predicted value and the observed one can
be now explained and it is possible to infer Sa1(A1), that
is we have been able to identify the fault. This trivial ex-
ample shows that there is a relation between the amount of
knowledge available for modeling the system to be diag-
nosed and the kind of results that MBD can provide.

The domain knowledge about a generic AND gate can
be considered as a part of a model library relative to com-
binatorial digital circuits. If such a library contains models
for gates of type OR, NOT, XOR, etc., it is easy to see that
a model of a speciÞc combinatorial circuit can be built by
exploiting the model library and the description of the cir-
cuit in terms of components and connections among com-
ponents.

If we have to diagnose a circuit, it is easy to imagine
that the detection of one or more discrepancies may be ex-
plained in many different ways, that is the occurrence of
a fault in different logical gates may explain the observa-
tions. In some complex case, no single fault (that is the
fault of a single logical gate) can explain the observations,
so the diagnosis has to involve a number of concomitant
faults. In this case it is no more possible to conceive diag-
nosis as a form of classiÞcation. On the contrary, diagnosis
has to be seen as a synthetic task where the solution has to
be assembled by combining the nominal and faulty behav-
ior of the components in order to explain the observations.

2 Formal issues

One of the achievements of MBD is the formalization of
the diagnostic process; precise semantics can be given to
terms such as Òexplain observationsÓ. The pioneering work
in [45] and in [23] started an analysis of the notion of di-
agnosis. In the following we report a formalization that
is quite general and is valid for static systems (see next
section for the temporal dimension). Let us start from the
deÞnition of the notion of system description.

DeÞnition 1 A System Description (SD) is a pair:

- SV is the set of variables partitioned in INPUTS
(system inputs), COMPS (components of the sys-
tem), INTV ARS (non observable internal variables and

OBS (observable variables). DOM(v) denotes the Þ-
nite domain of variable v ∈ SV; in particular, for each
C ∈ COMPS, DOM(C) consists in the list of behav-
ioral modes for C (an ok mode and a set of fault modes)

- DT (Domain Theory) is a set of logical formulas de-
Þned over SV representing the instantaneous behavior
of the system (under normal and abnormal conditions).

DeÞnition 2 A Diagnostic Problem is a tuple DP = (SD,
X , Y) where:
- SD is a System Description
- X is an instantiation of the INPUTS variables, that is
the actual value of the inputs
-Y is an instantiation of the OBS variables, that is the ac-
tual value of the observable internal variables.

We are now in the position of deÞning the notion of diagno-
sis. Actually, the formal framework allows to distinguish
between different characterizations of diagnosis.

DeÞnition 3 Given a diagnostic problem DP = (SD, X ,
Y), let D be an instantiation of COMPS (that is D speciÞes
a behavioral mode for each component C ∈ COMPS). D
is a consistent diagnosis for DP iff DT ∪ X ∪ Y ∪ D �
 ⊥
This deÞnition requires that the behavioral modes of the
components of the system do not cause any contradiction
with the actual observations Y when the inputs are X .

A stronger notion of explanation imposes the additional
requirement that the diagnosis D entails the observations
(abductive diagnosis).

DeÞnition 4 Given a diagnostic problem DP = (SD, X ,
Y), let D be an instantiation of COMPS. D is an abductive
diagnosis for DP iff DT ∪ X ∪ Y ∪ D �
 ⊥ and ∀m(x) ∈
Y;DT ∪ X ∪ D 
 m(x)

Abductive diagnosis is stronger than consistenccy-based
diagnosis: all abductive diagnoses are consistency-based
diagnoses, but the vice-versa is not true. [20] shows that
the consistent characterization and the abductive one of di-
agnosis are just two extremes of a spectrum where var-
ious form of integration are possible: the most suitable
characterization of the diagnosis depends on the amount
of knowledge available for the system to be diagnosed 1.

Other formal characterizations of diagnosis have been
proposed: [32] discusses a set theoretic characterizations
while [26] a probabilistic one.

3 Modelling systems

The formal characterization discussed above is a knowl-
edge level reference for diagnostic problem solving. In or-
der to move into the real world, other problems have to

1The model of the nominal behavior is sufÞcient for consistency-
based diagnosis while an abductive characterization requires the model
of both the nominal and faulty behavior of the system
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be solved such as deÞning ontologies for modeling real
systems, deÞning computational approaches to diagnostic
problem solving, integrating diagnosis in the overall oper-
ational life of systems and in the process of designing sys-
tems. In this section we focus on the Þrst topic; the others
will be tackled in the following sections.

Model-based diagnosis relies on a model of the system
to be diagnosed. A model is an abstraction of the system
and may or may not capture some of its features. Decid-
ing the features to be captured is a critical issue, depending
on the goals of the diagnostic process and on the types of
repair/recovery actions that can be performed after fault
detection/identiÞcation/isolation [21]. Let us consider a
simple example concerning the electronic/hydraulic sys-
tem controlling the landing system of an aircraft. If the
diagnostic process only aims at detecting anomalies to ac-
tivate a backup system, then we only need a coarse model
allowing us to detect that the gear is not opening. On the
other hand, if we aim at compensating fault, e.g., by chang-
ing activation of pumps or opening/closing valves to main-
tain functionality, then we need a more detailed model al-
lowing us to detect the speciÞc part (e.g., pump or pipe)
which is failing.

Considering physical systems, modeling the structure of
the system, i.e., the set of its components and their inter-
action may be sufÞcient for some tasks. Notice, however,
that also selecting the granularity of components may lead
to alternative choices (e.g., consider again the hydraulic
system: a pump may be regarded as a basic component or
may be in turn decomposed into sub-components). Usually
such a choice is guided by the repair strategies that identify
the minimal replaceable/repairable components. Adopting
a structural model only is usually not enough and models
of the systemÕs function or of the system behavior have
to be considered. A basic principle adopted by most ap-
proaches to MBD is decomposition; the description of be-
havior/function is given for each component type indepen-
dently of the others and of the systems in which compo-
nents instances will be used. This principle, called Òno
function in structureÓ is a very important one as it allows
having re-usable models and to build model libraries, that
is chunks of models that can be reused in whatever system
that has instances of the same component type.

Models may describe the nominal behaviour of compo-
nent types (e.g., in ÒcorrectÓ pipe ßows at the two extremes
are the same and pressure is constant) or the behavior in
the presence of faults (e.g., in a ÒleakingÓ pipe there is a
pressure drop and ßows are not balanced).

Let us now discuss how to describe the func-
tion/behavior of a system. Also in this case different as-
sumptions can be made, leading to different types of mod-
els. In the following we brießy sketch, in a partial way,
some of the basic choices and modeling ontologies.

First of all, in almost all the cases the models are quali-
tative, that is the variables describing the components fea-
tures (e.g., input, output, state, etc.) assume values in Þnite

sets corresponding to qualitative abstractions of their ac-
tual domains [48]. As an extreme example, we may model
the ÒpressureÓ or ÒßowÓ in an hydraulic model as only Òab-
sentÓ (Ò0Ó) or ÒpresentÓ (Ò+Ó). Such distinctions, in fact,
are usually sufÞcient to perform diagnosis where one does
not need to simulate precisely the system behavior, but
only to detect if the behavior differs from the expected one.
In many cases rather than representing absolute values the
qualitative domains represent orders of magnitude or devi-
ations with respect to the expected behavior. For example,
one may simply represent that in a normal pipe pressure
and ßow do not deviate while in a leaking pipe the output
ßow and the pressure are less than they should be (on the
other hand, in a clogged pipe the output ßow is less than it
should be and the pressure is more than it should be).

Qualitative forms of simulation have been deÞned and
theoretical and computational approaches developed to
represent notions such as causation, functional dependen-
cies (see [55]). Causal models, in particular, have been
adopted in many systems to represent inßuences (this is
common especially in many work on physiological sys-
tems and in medical applications). Moreover, also hybrid
models mixing semi-quantitative (or even quantitative) and
qualitative models have been used when more precise mod-
els are needed (e.g., in the detection phase where one needs
to determine whether the value read on a given sensor is as
expected or is deviated).

When modeling the behavior of a system (or compo-
nent) different assumptions can be made about its evolu-
tion across time. The simplest assumption is to abstract
time by building static models in which all phenomena
are modeled atemporally and diagnosis is performed on
a snapshot of sensor readings. This may be sufÞcient in
some cases, especially when time is not necessary to dis-
criminate among alternative behavior or when it is not nec-
essary to interpret measurements gathered across time. In
other cases these assumptions cannot hold and the tempo-
ral behavior needs to be modeled. There is a large variety
of temporal constraints: for example one may add them on
the system behaviour (e.g., delay between input and out-
put) or may model the time-varying behaviour of systems
(e.g., the fact that component may be in different modes
across time, moving from correct to abnormal and vice-
versa, as in transient faults) or may include in the model a
notion of state and then represent the dynamic behavior of
systems (e.g., the case when output across time depend on
the input and state of a component).

It is worth noting that new formal characterizations
which extend those in the previous section have been pro-
posed in order to deal with temporal dynamic systems. [6]
proposes an extension of the classical logical formaliza-
tion; many other formalizations are based on the adoption
of some discrete event approach, such as Petri net, au-
tomata or process algebras (see e.g., [47, 39]

Italian researchers brought important contributions in
this Þeld. At University of Torino (UniTo) different kinds
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of modeling have been investigated: causal models [19],
component oriented models based on deviations (with
Centro Ricerche Fiat [8]), process algebras [15]). Causal
modeling including time [4] and hybrid modeling have
been studied in Pavia, with special focus on medical appli-
cations [3] and material sciences [28]. Approaches based
on discrete event systems have been proposed in Brescia
for the atemporal [2] and temporal case [31], with applica-
tion to large dynamic systems.

4 EfÞcient diagnostic problem solving

The problem of computing model based diagnoses is an
hard task. This kind of analysis was another important as-
pect of the formalization of the diagnostic task. In fact, the
solution space to search is quite large: 2N where N is the
number of components of the system to be diagnosed and
we restrict the task to fault localization (i.e., each compo-
nent has just two behavioral modes: OK and Abnormal).
If we want to deal with fault identiÞcation, the complexity
grows since the solution space becomes mN , where m is
the average number of behavioral modes of each compo-
nent. It is not surprising that in general the complexity of
solving a diagnostic problem has been proved to be an NP-
hard problem for both the consistent and abductive char-
acterizations [7]. A further source of complexity derives
from the very nature of diagnostic problem solving: a diag-
nostic problem cannot be considered solved when a diag-
nosis has been determined, but just when all the diagnoses
have been computed, so any recovery /repair /decision pro-
cess has got the complete picture of what has gone wrong.
In general, the number of diagnoses can be exponential in
the number of components and even if we introduce some
preference criterion among diagnoses (such as dealing just
with the minimum cardinality faults) the number of pre-
ferred diagnoses can be still exponential. So, in principle
we have to del with intractability both in time and space.

In recent years a number of approaches have been inves-
tigated in order to practically alleviate the computational
complexity of computing the diagnoses. One of the main
approaches is the development of strategies computing pre-
ferred diagnoses only. As said above there are many differ-
ent ways for deÞning preference among diagnosis but most
of them are based on the intuitive idea that one diagnosis
D is preferred over diagnosis D′ if D involves less faults
than D′ (or a subset of the faults involved in D′). This cri-
terion has also a probabilistic motivation if we assume in-
dependence among faults (an assumption often done). For
the task of diagnosis in most cases it is not strictly nec-
essary to have at disposal a precise measure of the fault
probability as also very rough estimates are sufÞcient [22].
Algorithms which focus just on leading diagnoses may get
good performance but in some cases may have to depend
on (costly) backtracking in order not to loose solutions.

As stated above time complexity is just part of the prob-
lem. Also space can be a problem when we have to rep-

resent the entire set of possible diagnoses. One way to
deal with the problem is to devise some methods for rep-
resenting in a compact way a large number of alternative
diagnoses. An interesting approach was proposed by [24].
More recently the notion of scenario was introduced in [52]
The adoption of symbolic methods (in particular the use of
Ordered Binary Decision Diagrams) has also been inves-
tigated. OBDDs can be exploited not only to represent in
a compact way the set of diagnoses, but also to encode
the domain theory (the behavior of the components under
nominal and faulty conditions) as well as the possible evo-
lutions of the faults over time.

A quite different approach for dealing with the complex-
ity of diagnosis involves the use of multiple models (e.g.,
[11] and [51] for Italian contributions).. An approach that
is been investigated is the exploitation of structural abstrac-
tion for hierarchical diagnosis. The basic idea is to have a
number of descriptions of the same system at different lev-
els of detail: in particular, in structural abstraction a macro-
component aggregates a number of components for pro-
viding a more abstract representation of the system. This
structural abstraction can be used for focusing diagnosis:
fault localization is done Þrst at the most abstract level and
the results obtained in one level are used to focus diagnosis
at the more detailed levels. In this way, in most cases, there
is a signiÞcant reduction of the overall computational cost.
Starting from the seminal work in [37], the approach has
been widely adopted and reÞned.

A signiÞcant Italian contribution to the Þeld of hierar-
chical diagnosis is the one in [10]; they can derive auto-
matically a simpler version of a diagnostic problem by ex-
ploiting the amount of available observations for the prob-
lem at hand. The problem of automatically learning a set
of abstractions (instead of exploiting the ones provided by
a human expert) has been addressed by [46] and [53] for
static systems. Compilation strategies for performing efÞ-
cient problem solving is another solution which has been
investigated in the atemporal [17] and temporal case [18].

Multiple models do not mean necessarily that all the
models share the same formalisms. There is a long tra-
dition in diagnosis to adopt and combine different repre-
sentation formalisms Among the integration of different
reasoning paradigms for diagnostic problem solving it is
worth mentioning the one between Case-Based Reason-
ing (CBR) and Model-Based Reasoning [34, 42]. CBR
is based on the idea that new problems can be solved by
looking at a set of problems already solved, determining
the ones that are most similar to the one at hand and adapt-
ing the solution of the retrieved cases to be a solution for
the new problem. Models at different levels of abstraction
have been studied by CISE [25] with application to power
generation and distribution networks; similarly multimod-
eling with focus on fuzzy models has been studied at Po-
litecnico di Milano [5].
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5 Off-line VS On-line and beyond diagnosis

Diagnosis is a task which should be integrated in the over-
all lifetime of a system. Usually diagnosis is a mean rather
than a goal: the actual goal is preserving system function-
ality (this may have different meanings, such as availabil-
ity of the system, reliability of its performance, preserving
correct behaviour, avoiding critical situations . . .). This
means that diagnosis has to be part of the monitoring / in-
terpretation / repair /recovery /reconÞguration process.

Two very different situations have to be considered: off-
line and on-line diagnosis. In the former case, faults have
occurred, measurements have been logged or may be taken
on the system and the ultimate goal is to restore system
functionality by repairing it. A typical example is when a
car is brought to a workshop and diagnosis is a mean to de-
cide how to repair it (by replacing components or repairing
them or reconÞguring the system).

In the latter case, the aim is at monitoring the system
during its operation and trying to detect faults as soon as
possible and then performing some recovery action to pre-
serve the system functionality as much as possible, pre-
venting possibly dangerous or critical situations. Using
again the car example, a typical case is the diagnostic
function added to the electronic control unit which detects
anomalies while the car is operating and decides recov-
ery or compensation actions (e.g., limiting performance in
case of failures to the braking system). Most of the de-
vices and systems nowadays have sophisticated electronic
control and need control/diagnostic software (the evolu-
tions of cars is paradigmatic but other domains such as the
aerospace one are even more critical). The two situations
are not exclusive and one may have both on-line and off
line diagnostic systems; in such a case the former should
be able to feed information to the latter.

Off-line and on-line diagnosis impose different require-
ments to the designer of the diagnostic system. First of all
the goal is different and can be stated as Òrepair vs recov-
eryÓ. The two tasks usually need different types of models
or models at different level of granularity. For example, in
the on-line case one may even be not interested in localiz-
ing the fault as far as the recovery action to be performed is
anyway the same. In the on-line case, moreover, abstract-
ing from temporal aspects and dynamic behavior is usually
impossible. Moreover, the integration with activities such
as tracking/monitoring and planning for recovery is very
important. Second, several constraints are imposed by the
need to be on-line: for example, real-time response may
be needed or at least response before degeneration of the
system to a critical and dangerous state.

Off-line vs on-line diagnosis has been studied by Cen-
tro Ricerche Fiat (CRF) and UniTo. At CRF a system
for off-line diagnosis has been developed in the late 80Õs
(IDEA [9]). The problems arising in embedding diagnos-
tic software in ECU (Electronic Control Units) on-board
vehicle has been studied in the European project VMBD

which proposed a methodology to compile fault trees from
a model-based system [8, 16]. Similarly compilation of
OBDDs has been studied by UniTo for on-line monitoring
of a team of robots [35]. Compilation to improve efÞciency
has also been studied at University of Brescia [30]. CISE
studied on-line approaches to monitoring and diagnosis of
power generation systems [25].

6 Putting diagnosis in the context

Developing the diagnostic agent for a system is part of
the overall system life-cycle. In most technical domains
many activities are performed during the design of a sys-
tem, mainly in connection with the deÞnition of its control
subsystem. In the aerospace or automotive industry, for
example, models of the system are usually adopted to sim-
ulate their behavior and the behavior of the control soft-
ware (the models are quantitative and tools such as Mat-
lab/Simulink are employed).

Unfortunately in current practice not much attention is
paid to aspects related to the design of the diagnostic sys-
tem or even to the analysis that the system is actually di-
agnosable (e.g., that it contains an appropriate number and
placement of sensors that provide data for interpreting and
diagnosing the system behaviour). FMECA (Failure Mode
Effect and Criticality Analysis) is usually performed after
the layout of the system and control strategies have been
deÞned2. The deÞnition of diagnostic software is usually
performed taking the results of FMECA as the main input.

The need of integrating diagnostic issues in the design
process has been recently advocated at industrial and re-
search level [14]. Approaches to integrated tasks such
as diagnosability analysis, sensor placement, automated
FMECA analysis and support for the design of the diag-
nostic agent have been proposed. They integrate quantita-
tive models used for control design with qualitative ones
and adopt integrate different methodologies (e.g., qualita-
tive simulation, analysis of discrete event systems, model
checking, to mention only some of them).

CRF in cooperation with UniTo studied the integration
of diagnosis into the design process in the IDD project
[40] ; Alenia and UniTo developed automatic generation of
FMECA from models [41],. while researchers at IRST ex-
ploited model-checking for verifying diagnosability [12].

7 Applications

Model-based diagnosis has been applied to many different
areas such as, for example, automotive, aerospace, power
generation and transmission systems, telecommunications,
medicine, ... Surveying the applications areas is beyond

2FMECA is the process of determining, according to a standardized
process, the effects of each single fault to the components of a system and
the sensors for detecting such faults. The process is performed manually
by expert engineers and produces tables which are part of the system de-
sign documentation.
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the scope of this paper; the interested reader is referred
to [36] for more details. Methodological and application
perspectives met several times in the model-based com-
munity(especially the European one) thanks to the Monet
Network of excellence on Model-Based Systems3. This
integration between theory and application has been very
fruitful as it allowed researchers to face realistic applica-
tion problems and allowed companies to get aware of the
technology and to transfer it into internal projects and ap-
plications. Thus, ideas from model-based systems can be
found today in many applications, especially in automo-
tive, aerospace and telecommunication domains. Some
paradigmatic case studies:

Tiger. developed by Intelligent Applications [54, 50] is
a system for diagnosing Gas Turbines installed in several
locations around the world and is probably one of the most
important AI success stories of the last decades. NASA
applied model-based techniques for monitoring, diagnosis
and reconÞguration during the experiment run on board
of the spacecraft Deep Space 1 [38]. IDEA developed
by Centro Ricerche Fiat (CRF) was installed and used in
more than 1500 Fiat Diagnostic Centers. Autosteve [43]
developed by University of Wales (and then by First Earth,
bought by Mentor Graphics; another success story for AI)
is successfully used in the Ford group to support FMECA
generation.

Other relevant industrial applications of diagnosis in
Italy have been developed by Alenia (diagnostic systems
to support the staff maintaining military aircrafts) Telecom
Italia (diagnosis of telecom networks) and CISE- ENEL
(diagnosis of power generation process).

While MBD has been mainly applied to technical do-
mains, other approaches to diagnosis have been widely
used in the medical domain: particularly relevant is the
adoption of Bayesian Networks for dealing with uncer-
tainty [33] and formalisms (such as Neural networks)
where knowledge can be learned by data [29]. However,
in recent years a lot of attention has been given to tools
supporting Clinical Guidelines where medical diagnosis is
seen just as a step in the complex activity of patient man-
agement and clinical decision making (for Italian contribu-
tions to the Þeld see, e.g., [44] and [49]).

8 Conclusions

Diagnosis has always been a very active areas of re-
search inside AI and, in particular, an area where different
methodologies met and where research and applications
integrated several times. The Monet Network funded by
the EU had in the last decade a very important role to cre-
ate a strong European research area and community. The
International Workshop on Principle of Diagnosis (DX)
presents every year the advances in research and the ap-
plications being developed.

3http://monet.aber.ac.uk
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