CONTRIBUTI SCIENTIFICI

CONSTRAINT PROGRAMMING

MICHELA MILANO

Dipartimento di Elettronica, Informatica e Sistemistica - Universita degli Studi di Bologna

FRANCESCA ROSSI

Dipartimento di Matematica Pura ed Applicata - Universita degli Studi di Padova

1 What is constraint programming?

Constraint programming [9, 1, 28] is a powerful paradigm
for solving combinatorial search problems. Constraint
programming is a multi-disciplinary research area, which
combines techniques from arti cial intelligence, opera-
tions research, databases, graph theory, and logic program-
ming. The basic idea in constraint programming is that the
user should state his problem by means of constraints, and
a general purpose constraint solver should solve such con-
straints. A constraint solver can also be seen as a procedure
that transforms a constraint problem into an equivalent
(simpler) one. Constraints are relations, which specify the
allowed ways of combining the values of some variables.
A constraint satisfaction problem (CSP), being just a set of
constraints, states which relations should hold among the
given decision variables. For example, in scheduling ex-
ams at the university, the decision variables might be the
times and locations of different exams, and the constraints
might be on the capacity of each examination room (e.g.
we cannot schedule more students to sit exams in a given
room at any one time than the room s capacity) and on the
exams scheduled at the same time (e.g. we cannot sched-
ule two exams at the same time if they share students in
common).

Given a constraint problem, a constraint solver nds an
assignment of values to its variables that satis es all the
constraints. Sometimes nding any solution is not enough,
but one should nd optimal solutions according to one or
more optimization criterion (e.g. minimizing the number
of days over which exams need to be scheduled), or nd
all solutions, or replace (some or all) constraints with pref-
erences, or also consider a distributed setting where con-
straints are distributed among several agents. Therefore
the original constraint-based techniques, developed since
the early 70 s, have been extended and adapted to deal with
such needs.

Constraint solvers nd solutions by searching the so-
Iution space systematically, such as with backtracking or

28

branch and bound algorithms, or use forms of local search
which may be incomplete, i.e., it may not nd the opti-
mal solution or a feasible one even if it exists. Systematic
methods usually use a mix of search and inference, where
inference consists of the so-called constraint propagation,
which propagating the information contained in one con-
straint to the neighboring constraints. Such kind of infer-
ence is useful since it can reduce parts of the search space.

Global constraints are often used to help modelling and
solving a problem. In fact, global constraints model com-
plex constraints that occur often in real life. Moreover, they
come equipped with special propagation procedures which
are very ef cient to achieve a certain degree of inference
over them.

Constraint problems on nite domains are in general
NP-complete. However, there are several subclasses of
constraint problems which can be solved polynomially.
Ways of characterizing such classes involve the connec-
tivity structure among the variables and the constraints, or
the language to de ne the constraints. For example, con-
straint problems where the connectivity graph has the form
of a tree are polynomial to solve.

When trying to model a real-world problem via a set
of constraints, one may realize that the problem is over-
constrained. Thus, no solution would be found if all con-
straints are considered. Actually, some constraints are
not mandatory, but should rather be modelled as prefer-
ences. Soft constraints provide a formalism to do this, as
well as techniques to nd an optimal solution according
to the speci ed preferences. Many of the constraint solv-
ing methods like search and constraint propagation can be
adapted to be used with soft constraints.

Constraint programming has proven useful in important
applications from industry, business, manufacturing, and
science. Important extensions have been done encapsu-
lating Operations Research techniques in CP solvers for
solving real life applications. Example of application ar-
eas where constraint programming is now one of the most
successful technologies are scheduling, resource alloca-

Anno Ill, N° 1/2, Marzo-Giugno 2006

CONTRIBUTI SCIENTIFICI

tion, timetabling, and con guration. However, constraint

programming has also been successfully applied to other

areas, such as timetabling, biology, and system design.
Parts of this paper are based on [37].

2 Modelling a constraint problem

Modelling a real-world problem as a CSP is not an
easy task, since many problems are ill-speci ed and/or
over-constrained; this requires a long interaction with
whomever speci es the problem. It is also a very crucial
task, since the chosen model can greatly in uence the ef -
ciency of the constraint solver.

Choosing a model means deciding the variables, their
domains, and the constraints that apply to these variables.

Given a problem, there are many logically equivalent
models for it. In fact, one can choose to use variables
to model different items, and, consequently, to have dif-
ferent constraints. For example, when modelling a nurse
scheduling problem in a hospital, we may assign time slots
to nurses, or nurses to time slots. In many cases, such mod-
els should not be used as alternatives, but rather as different
(redundant) components of a single model. Consistency
among such components should then be maintained; this
is usually done via so-called channelling constraints [6].
As redundant models can help, also redundant constraints
can be helpful. Redundant constraints do not add anything
to the problem semantics, but they are often used to help
prune the search space.

Global constraints are an essential ingredient of any
good model. Global constraints are complex constraints,
usually involving several variables, providing a concise
formulation of common subproblems. In fact, they rep-
resent patterns which often occur in real-life problems.
Therefore, they help generating a compact model for a
problem. Moreover, each global constraint is equipped
with a speci ¢ (propagation) algorithm, which exploits the
semantics of the constraint to prune the domains of its vari-
ables as much as possible, and thus to make the search
for a solution faster. Therefore, global constraints are also
useful to solve a problem more ef ciently. The canoni-
cal example of a global constraint is the all-different con-
straint [34]. An all-different constraint over a set of vari-
ables states that the variables must be pairwise different.
The all-different constraint is widely used in practice and is
built-in in most, if not all, commercial and research-based
constraint programming systems. Hundreds of global con-
straints have been proposed [2].

Symmetries occur naturally in many problems. Con-
sider for example a university timetabling problem where
several classrooms are identical [7]. Solving a problem
whose model has a lot of symmetries may be very inef -
cient, since we may waste much time visiting parts lead-
ing to symmetric solutions, or (even worse) to symmet-
ric non-solutions. Possible remedies involve adding con-
straints which eliminate symmetric solutions or modifying

Anno I, N° 1/2, Marzo-Giugno 2006

the search procedure to avoid visiting symmetric states.

Classical constraints have variables ranging over nite
domains. However, real-world problems may need differ-
ent domains, such as reals and sets. Constraint program-
ming has therefore been extended to deal with many other
domains, to provide faithful models of real-world prob-
lems.

3 Constraint propagation

Once we have chosen a model for the problem at hand,
we must solve it via a constraint solver. Solvers usually
solve a constraint problem via searching the set of solu-
tions. However, no matter which search technique is used,
one of the key ingredient of a constraint solver is constraint
propagation. Constraint propagation is a form of inference
that modi es the problem without changing its semantics
(that is, the problem solutions). This inference eliminates
some local inconsistencies. A local inconsistency is an in-
stantiation of some of the variables that satis es the con-
straints among such variables but cannot be extended to
one or more additional variables, and thus it cannot be part
of any solution.

There are several kinds of constraint propagation, re-
lated to as many notions of local consistency. However,
arc consistency (AC) [27] is the most used local consis-
tency notion in practice. A constraint problem is arc con-
sistent if all its constraint are arc consistent. A constraint
c on two variables, say x and y, is AC if for all values in
the domain of z there is at least a value in the domain of y
that satis es C. If the constraint is not AC, it can be made
AC by repeatedly removing unsupported values from the
domains of its variables.

When the constraints are not binary, a generalized form
of arc-consistency, called Generalized Arc-Consistency
(GACQ), is used. GAC ensures that, for each constraint, all
elements in the domain of every variables of the constraint
participate in some solution of the constraint.

Many algorithms for enforcing AC or GAC have been
proposed. They all achieve the same result but use dif-
ferent data structures or support keeping techniques, thus
having different space and time complexities. An optimal
algorithm for an arbitrary constraint has O (rd") worst case
time complexity, where 7 is the arity of the constraints and
d is the size of the domains of the variables [30].

Higher levels of local consistency can be considered.
For example, path-consistency [31] is concerned with all
the triangles made of three variables and the constraints
among them. However, the higher the level of consistency,
the more expensive it is to enforce such a level of consis-
tency. So one must in general reach a tradeoff between
the cost of the constraint propagation, and the amount of
pruning achieved.

Global constraints have their own ad hoc propagation
algorithm, which enforces a certain level of consistency
among their variables. Such ad hoc algorithms are usu-

29

CONTRIBUTI SCIENTIFICI

ally much more ef cient than general-purpose propagation
techniques such as GAC. For example, the all-different
constraint can be made GAC with its ad hoc algorithm in
O(r2d) time in the worst case, using a maximum matching
algorithm on a bipartite graph.

4 Search

Usually a CSP is solved by searching its solution space.
A search algorithm for solving a CSP can be either com-
plete or incomplete. Complete, or systematic, algorithms,
such as backtracking search, guarantee that a solution will
be found if one exists. Moreover, if the search is for an
optimal solution, then they always nd one of the optimal
ones. On the other hand, incomplete, or non-systematic, al-
gorithms, such as local search, may fail to nd a solution,
or an optimal one. However, such algorithms are often ef-
fective at nding a solution if one exists, and can be used
to nd an approximation to an optimal solution.

A search tree is just a tree where the root is the given
problem, to be solved, and where each internal node is
obtained by the addition of a branching constraint to the
father node (for instance by an instantiation of one of the
variables).

Backtracking search usually performs a depth- rst
traversal of the search tree. At each node, an un-
instantiated variable is selected, and one of its values is
assigned to it. The constraints of the problem are used to
check whether the new instantiation is possible. If the se-
lected variable cannot be instantiated, backtracking occurs.

Since constraint problems are NP-complete, backtrack-
ing search has an exponential worst case time complex-
ity. However, the ef ciency ef ciency of backtrack-
ing search can be improved by using heuristics for vari-
able and value selection, intelligent techniques for non-
chronological backtracking, or also by including some
form of constraint propagation at each node of the search
tree.

In fact, as noticed above, constraint propagation can
eliminate inconsistencies, thus reducing variable domains.
This can reduce the branching factor of the search tree and,
if all values are eliminated from a variable domain, it can
allow a backtracking phase to initiate earlier.

When we have to nd an optimal solution, branch and
bound search can be used. Depth First Branch and bound
performs, as backtracking search, a depth- rst traversal of
the search tree. Recently, also Best- rst branch and bound
has been integrated into CP solvers. At each node it keeps
an over-estimation of the quality of the complete assign-
ments below the current node, which is compared to the
quality of the best solution found so far. When the over-
estimation is worse than the current best, the subtree can
be pruned because it contains nothing better than what we
already have. The ef ciency of this algorithm depends
largely on its pruning capacity, that relies on the quality
of its over-estimation. Thus many efforts have been made

30

to improve it.

Tree search is not the only possibility. Local search is
fundamentally different than backtracking search: search
is performed by passing from one complete instantiation
to another one. Each complete instantiation is evaluated
by a cost function, which measures how far we are from
a solution, or from an optimal solution. For satisfaction
problems, a standard cost function is the number of con-
straints that are not satis ed. For optimization problems,
the cost function is a measure of the solution quality.

Choices of the starting instantiation, of the neighbor-
hood, of where to move in the neighborhood, and of when
to stop are crucial for the quality of a local search algo-
rithm. For this purpose multi-starts, simulated annealing,
and tabu search have been proposed.

CP systems such as COMET [42] support local search
through facilities to propagate the consequences of change.
COMET has the same modelling power of Constraint Pro-
gramming languages, since it uses exactly the same con-
straints, but it differs in how constraints are built from a
software engineering viewpoint. In CP, constraints have
an embedded ltering algorithm which works on domain
variables and removes inconsistent values. Every time an
event happens (like domain value removal or the variable

xing and the changing in a domain bound) constraints are
awaked and propagate. In COMET, constraints are again
software components that are maintained in a constraint
store and awaked each time one or more of their variables
change one value (i.e., the local search is moving from one
solution to another). Constraints are called differentiable
constraints and they maintain propertied such as the satis -
ability, or the violation degree, and how much the involved
variables contribute to it. Constraints can be queried to
evaluate the effect of local moves on the properties they
preserve.

5 Soft constraints

It is often the case that, after having listed the desired con-
straints among the decision variables, there is no way to
satisfy them all. That is, the problem is over-constrained.
Even when all the constraints can be satis ed, and there are
several solutions, such solutions appear equally good, and
there is no way to discriminate among them. These sce-
narios often occur when constraints are used to formalize
desired properties rather than requirements that cannot be
violated. Such desired properties should rather be consid-
ered as preferences, whose violation should be avoided as
far as possible. Soft constraints provide one way to model
such preferences.

There are many classes of soft constraints. Examples
are: fuzzy, possibilistic, probabilistic, weighted. In fuzzy
constraints, each assignment of the variables involved in
a constraint has a preference between 0 an 1, the prefer-
ence of a complete instantiation is the minimum prefer-
ence given by the constraints, and a complete instantiation

Anno I, N° 1/2, Marzo-Giugno 2006

CONTRIBUTI SCIENTIFICI

is optimal if it has the highest preferences. In weighted
constraints, each constraint has a weight, the cost of an
instantiation is the sum of all weights of the violated con-
straints, and an optimal solution is a complete instantiation
with minimal cost.

The literature contains also at least two general for-
malisms to model soft constraints, of which all the classes
above are instances: semiring-based constraints [4] and
valued constraints [39]. Both formalisms rely on similar
algebraic structures, and have the same expressive power if
preferences are totally ordered. However, partially-ordered
preferences, which can be expressed in the semiring-based
formalism, can be useful in multi-criteria optimization,
since in this case there could be situations which are natu-
rally not comparable.

Soft constraint problems are as expressive, and as dif -
cult to solve, as constraint optimization problems, which
are just constraint problems plus an objective function. In
fact, given any soft constraint problem, we can always
build a constraint optimization problem with the same so-
lution ordering, and viceversa. Therefore, branch and
bound is a natural choice to solve such problems. As back-
tracking search can be improved by including constraint
propagation, the same can be done, in some cases, also
for branch and bound for soft constraints. Soft constraint
propagation is just an adaptation of the usual notions of
constraint propagation to soft constraints. However, while
constraint propagation in classical constraints prunes the
domains or the constraints while maintaining the same set
of solutions, in soft constraints it modi es (worsens) the
preferences (or the costs).

Unfortunately, in general this modi cation can change
the semantics of the soft constraint problem. There are
however cases where the semantics is maintained: when
preference combination is idempotent. This is for example
the case of the fuzzy constraint class, where combination
is via the min operator.

Many real problems do not rely on idempotent operators
because such operators provide insuf cient discrimination,
and rather rely on frameworks such as weighted or lexico-
graphic constraints, which are not idempotent. For these
classes of soft constraints, equivalence can still be main-
tained, compensating the addition of new constraints by
the subtraction of others. This can be done in all fair
classes of soft constraints [8], where it is possible to de ne
the notion of subtraction . Soft constraint propagation,
used within a branch and bound algorithm, can help ob-
taining a tighter over-estimation, and thus achieving more
pruning.

Soft constraints are a way to represent preferences.
There are also other ways to do this, such as CP-nets. CP-
nets and soft constraints have complementary advantages
and drawbacks. Attempts to merge them into a unique
framework have been done [12]. Preferences are also the
subject of classical voting theory, which has been recently
extended and adapted to account for multi-agent prefer-

Anno I, N° 1/2, Marzo-Giugno 2006

ence aggregation based on soft constraints [32].
Soft constraints have been applied to many elds, such
as bioinformatics and computer security [5].

6 Hybrid CP/OR techniques

In the last decade, a very exciting research line has been
explored to improve the performances of Constraint Pro-
gramming solvers for a number of applications. A num-
ber of operations research methods have found their way
into constraint programming, see [29]. This development
is very natural, since these two techniques present many
similarities. They both describe problems via a declara-
tive model, they both are based on constraints, and tree
search is the way both techniques explore the search space.
However, while the view of constraints in CP is local, i.e.,
constraints are software components embedding a ltering
algorithm that works locally, Operations Research tech-
niques consider the constraint set as a whole cloth, consid-
ering them all in the linear relaxation. Constraint Program-
ming is more focussed on the feasibility part, while OR
concentrates more on the optimality part. Therefore, they
show similarities and differences that suggest that their
merging could lead to advantages in both sides.

There are mainly two directions for integrating CP and
OR. The rst concerns the use of OR based relaxations in
CP, while the second explores problem decomposition and
faces each subproblem with the most suited solver.

6.1 Embedding relaxations into CP.

When we face a combinatorial optimization problem, an
additional Itering w.r.t. traditional propagation can be
done. The one based on optimality reasoning, aimed at re-
moving those values that are proven sub-optimal. To do so,
Constraint Programming, more and more often, embeds al-
gorithms and techniques from Operations Research. The
use of relaxations in CP is becoming an essential compo-
nent for the ef cient solution of hard combinatorial prob-
lems.

Relaxations can be encapsulated in different ways, the
most straightforward being the use of a linear solver as if it
was a global constraint. This techniques has been proposed

rst in [36] and [3] and extended by [33].

For being effective the interaction between the two
solvers should last during the overall computation. In fact,
the linear programming solver should achieve a tight inte-
gration with the standard constraint propagation.

Clearly this procedure is more effective if the bound
is tight. Therefore, Refalo [33] has proposed to tighten
the relaxation with cutting planes added during search and
coming from CP global constraints. In particular, cutting
planes can be derived from global constraints representing
sub-problems and added to the Linear Programming model
so as to tighten the overall relaxation. Refalo has provided

31

CONTRIBUTI SCIENTIFICI

many examples and shown that it is very effective in prac-
tice.

An additional way to use relaxations in Constraint Pro-
gramming is to integrate them within global constraints.
One can optimally solve the problem represented by the
global constraint plus an objective function, as it happens
for instance for the all-different constraint with costs. In
this case, we can achieve generalized arc consistency by
using for instance a network ow algorithm [35]. If in-
stead the constraint represents an NP-hard problem, like in
case of the global path constraint for expressing the Trav-
elling Salesperson Problem, then we could embed a relax-
ation into the constraint and perform cost-based ltering
[16]. The only requirement is that the relaxation provides
its optimal solution and a gradient function measuring the
variable-value assignment cost. Again the relaxation can
be tightened via cutting planes as proposed in [17].

6.2 Problem Decomposition

A second, very interesting, way to cope with complex hard
combinatorial problem is to decompose them in easier sub-
problems, and identify the solver most suited for each part.
Clearly the solvers should interact and exchange informa-
tion. One of the most successful examples is the CP-based
Benders Decomposition [23].

Benders decomposition has been studied in the 60 s and
is an effective method for solving a variety of structured
problems. Itis particularly suited for those problems where

xing a number of variables, called hard variables, makes
the problem simpler.

Instead of blindly trying tentative values for the hard
variables we can solve a master problem (which takes into
account constraints on hard variables). After xing hard
variables, a subproblem can be solved, taking into account
the remaining variables. The process iterates and con-
verges to the optimal solution. The iteration between the
master and the subproblem is regulated by the so called
Benders cuts.

In Operations Research, the subproblem should be a lin-
ear program while in [23] this restriction has been relaxed
de ning the Logic-Based Benders Decomposition frame-
work. In this setting, the subproblem can be expressed as
a Constraint Satisfaction Problem.

An interesting and successful application of Logic-
based Benders Decomposition is scheduling with alterna-
tive resources [21], [22], [19]. The allocation is done via
Integer Linear Programming, while scheduling is solved
through a Constraint Programming solver. The two solvers
interact via the generation of no-goods and cutting planes.
The procedure is proved to converge to the optimal solution
and performances improve up to three order of magnitude
with respect to a single approach.

Another decomposition technique is CP-based column
generation and branch and price [15]. It is a very useful
approach for problems for which an integer-linear model

32

would involve too many (sometimes an exponential num-
ber of) variables. The purpose is to enable an optimal so-
lution to be found, and proven optimal, without ever con-
sidering more than a small proportion of these variables -
certainly only a number that grows polynomially with the
problem size. Therefore the problem is decomposed into
two parts: the master problem working on a subset of the
columns (variables), while the subproblem decides which
column is convenient to add to the master at the next itera-
tion.

More typically column generation is the main algorithm
and the hybridisation comes through the choice of algo-
rithms used to solve the subproblem. In the classic ap-
plication of column generation to crew scheduling, the al-
gorithm for the subproblem is often a shortest path algo-
rithm on a network whose edge costs are dual prices in-
herited from the master problem. CP-based column gener-
ation has been used for solving the travelling tournament
problems [14], crew rostering and scheduling [40] and em-
ployee timetabling [10].

7 Constraint Programming Languages

Constraints can be, and have been, embedded in many pro-
gramming environments, but some are more suitable than
others. The fact that constraints can be seen as relations or
predicates, that their conjunction is a logical and, and that
backtracking search is a basic methodology to solve them,
makes them very compatible with logic programming [26].
The addition of constraints to logic programming has given
the constraint logic programming paradigm [25, 28].
Syntactically, constraints are added to logic program-
ming by just considering a speci ¢ constraint type (for ex-
ample, linear equations over the reals) and then allowing
constraints of this type to appear in the body of the clauses.
Besides the usual resolution engine of logic programming,
one has a (complete or incomplete) constraint solving sys-
tem, which is able to check the consistency of constraints
of the considered type. This simple change provides many
improvements over logic programming. First, the concept
of uni cation is generalized to constraint solving: the rela-
tionship between a goal and a clause (to be used in a res-
olution step) can be described not just via term equations
but via more general statements, that is, constraints. This
allows for a more general and exible way to control the
ow of the computation. Second, expressing constraints by
some language (for example, linear equations and disequa-
tions) gives more compactness and structure. Finally, the
presence of an underlying constraint solver, allows for the
combination of backtracking search and constraint propa-
gation, thus generating more ef cient complete solvers.
CLP is not only a programming language, but a pro-
gramming paradigm, which is parametric with respect to
the class of constraints used in the language. Constraint
logic programming over nite domains was rst imple-
mented in the late 80 s by Pascal Van Hentenryck [20]

Anno I, N° 1/2, Marzo-Giugno 2006

CONTRIBUTI SCIENTIFICI

within the language CHIP [11]. Since then, newer con-
straint propagation algorithms have been developed and
added to more recent CLP(FD) languages, like GNU Pro-
log and ECLiPSe [24]. Constraint logic programming has
also been extended to deal with sets and multi-sets, to
be able to handle both nite domain constraints and con-
straints over sets/multi-sets [13].

Constraint-based tools have also been provided for im-
perative languages in the form of libraries. The typical pro-
gramming languages used to develop such solvers are C++
and Java. ILOG is one the most successful companies to
produce such constraint-based libraries and tools.

Constraints have also been successfully embedded
within concurrent constraint programming [38], where
concurrent agents interact by posting and reading con-
straints in a shared store. Languages which follow this
approach to programming are AKL and Oz.

High-level modelling languages exist for modelling con-
straint problems and specifying search strategies. For ex-
ample, OPL [41] is a modelling language in which con-
straint problems can be naturally modelled and the desired
search strategy easily speci ed, while COMET is an OO
programming language for constraint-based local search
[42]. CHR (Constraint Handling Rules) is instead a rule-
based language related to CLP where constraint solvers
can be easily modelled [18].

8 Promising research directions

When using a constraint solver, often it is not easy to un-
derstand what went wrong, or why a certain solution is re-
turned rather than another one. Explanation tools could
greatly help in making constraint technology easier to use.
system.

Preference elicitation allows users to intelligently inter-
act with a constraint system without being forced to state
all their constraints, or preferences, at the beginning of the
interaction. This can also be useful in scenarios where the
users want to avoid revealing all their preferences, for ex-
ample for privacy reasons.

Even when the user is willing to state all the information
at the beginning of the interaction, sometimes it may be
dif cult for him to actually state it in terms of constraints.
For example, it could be easier to state examples of de-
sirable or unacceptable solutions. In this cases, machine
learning techniques can be helpful to learn the constraints
from the partial and possibly imprecise user statements.

Uncertainty occurs in many real-life situations. in-
volve stochastic constraint programming, possibilistic con-
straints, and quanti ed constraints. More work is needed to
handle uncertainty and thus make constraint programming
more widely usable.

Fruitful cross-fertilizations with related areas of re-
search, such as SAT, Operations Research, knowledge rep-
resentation, multi-agent systems, and belief revision, will

Anno I, N° 1/2, Marzo-Giugno 2006

certainly produce many useful results for constraint pro-
gramming and its applications.

REFERENCES

[11 K. R. Apt. Principles of Constraint Programming.
CUP, 2003.

[2] N. Beldiceanu. Global constraints as graph proper-
ties on structured network of elementary constraints
of the same type. Tech. Rep. T2000/01, SICS, 2000.

[3] H. Beringer and B. De Backer. Combinatorial prob-
lem solving in constraint logic programming with co-
operating solvers. In C. Beierle and L. Plumer, edi-
tors, Logic Programming: formal Methods and Prac-
tical Applications, pages 245 272. North Holland,
1995.

[4] S. Bistarelli, U. Montanari, and F. Rossi. Semiring
based constraint solving and optimization. Journal
of the ACM, 44(2):201 236, 1997.

[5] S. Bistarelli, S.N.Foley, and B. O Sullivan. Detect-
ing and eliminating the cascade vulnerability prob-
lem from multi-level security networks using soft
constraints. In Proc. IAAI-04, 2004.

[6] B.M.W. Cheng, K.M.F. Choi, J].H.M. Lee, and J.C.K.
Wu. Increasing constraint propagation by redundant
modeling: an experience report. Constraints, 4:167
192, 1999.

[7] D.A. Cohen, P. Jeavons, C. Jefferson, K.E. Petrie, and
B.M. Smith. Symmetry de nitions for constraint sat-
isfaction problems. In P. van Beek, editor, Proc. CP
2005, pages 17 31. Springer, 2005.

[8] M. Cooper. High-order consistency in Valued Con-
straint Satisfaction. Constraints, 10:283 305, 2005.

[9] R. Dechter. Constraint processing. Morgan Kauf-
mann, 2003.

[10] S. Demassey, Gilles Pesant, and L.-M. Rousseau.
Constraint programming based column generation
for employee timetabling. In Proc. CPAIOR, volume
3524 of LNCS, page 140, 2005.

[11] M. Dincbas, P. van Hentenryck, H. Simonis, A. Ag-
goun, T. Graf, and F. Berthier. The constraint logic
programming language CHIP. In Proc. Int. Conf. on
Fifth Generation Computer Systems. Tokyo, Japan,
1988.

[12] C. Domshlak, S. Prestwich, F. Rossi, K. B. Venable,
and T. Walsh. Hard and soft constraints for reasoning
about qualitative conditional preferences. Journal of
Heuristics, 12(4/5), 2006.

33

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

34

CONTRIBUTI SCIENTIFICI

A. Dovier, C. Piazza, and G. Rossi. Multiset rewrit-
ing by multiset constraint solving. Romanian Journal
of Information Science and Technology, 4(1 2):59
76, 2001.

K. Easton, G. Nemhauser, and M. Trick. Solving the
traveling tournament problem: A combined integer
programming and constraint programming approach.
In Proc. PATAT, 2002.

T. Fahle, U. Junker, S. E. Karisch, N. Kohl, M. Sell-
mann, and B. Vaaben. Constraint programming based
column generation for crew assignment. Journal of
Heuristics, 8(1):59 81, 2002.

F. Focacci, A. Lodi, and M. Milano. Cost-based do-
main ltering. In Proc. CP’99, pages 189 203, 1999.

F. Focacci, A. Lodi, and M. Milano. Cutting planes
in constraint programming: an hybrid approach. In
Proc. CP 2000, pages 187 201, 2000.

T. Fruhwirth. Theory and practice of constraint han-
dling rules. Journal of Logic programming, 37:95
138, 1998.

I. E. Grossmann and V. Jain. Algorithms for hy-
brid milp/cp models for a class of optimization prob-
lems. INFORMS Journal on Computing, 13:258
276, 2001.

P. Van Hentenryck. Constraint Satisfaction in Logic
Programming. MIT Press, 1989.

J. N. Hooker. A hybrid method for planning and
scheduling. In Proc. CP 2004, pages 305 316,
Toronto, Canada, Sept. 2004. Springer.

J. N. Hooker. Planning and scheduling to minimize
tardiness. In Proc. CP 2005, pages 314 327, Sites,
Spain, Sept. 2005. Springer.

J. N. Hooker and G. Ottosson. Logic-based benders
decomposition. Mathematical Programming, 96:33
60, 2003.

IC-PARC. ECLiPSe
straint Logic Programming
http://www.icparc.ic.ac.uk/eclipse/, 1999.

The 4.2 Con-

System.

J. Jaffar and M.J. Maher. Constraint logic program-
ming: A survey. Journal of Logic Programming, 19
and 20, 1994.

J. W. Lloyd. Foundations of Logic Programming.
Springer Verlag, 1993.

A. K. Mackworth. Consistency in networks of rela-
tions. Al Journal, 8:99 118, 1977.

K. Marriott and P. J. Stuckey. Programming with con-
straints: an introduction. MIT Press, 1998.

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

M. Milano. Constraint and Integer Programming.
Kluwer, 2004.

R. Mohr and G. Masini. Good old discrete relaxation.
In Proc. ECAI-88, pages 651 656, Munchen, Ger-
many, 1988.

U. Montanari. Networks of constraints: Fundamen-
tal properties and applications to picture processing.
Inform. Sci., 7:95 132, 1974.

M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh.
Aggregating partially ordered preferences: possibil-
ity and impossibility results. In Proc. TARK X, ACM
Digital library, 2005.

P. Refalo. Linear formulation of constraint program-
ming models and hybrid solvers. In R. Dechter, ed-
itor, Proc. CP 2000, LNCS 1894. Springer-Verlag,
Berlin Heidelberg, 2000.

J.-C. Regin. A ltering algorithm for constraints of
difference in CSPs. In Proc. AAAI-94, pages 362
367, Seattle, 1994.

J.C. Regin. Arc consistency for global cardinality
constraints with costs. In Proc. CP ’99, 1999.

R. Rodosek, M. Wallace, and M.T.Hajian. A new
approach to integrating Mixed Integer Programming
and Constraint Logic Programming. Annals of Oper-
ational Research, 1997. Recent Advances in Combi-
natorial Optimization.

F. Rossi, P. van Beek, and T. Walsh. Constraint pro-
gramming. In Hanbook of Knoweldge Representa-
tion, F. van Hermelen, V. Lifschitz, B. Porter eds. El-
sevier, to appear in 20006.

V. Saraswat. Concurrent constraint programming.
MIT Press, 1993.

T. Schiex, H. Fargier, and G. Verfaillie. Valued con-
straint satisfaction problems: hard and easy prob-
lems. In Proc. IJCAI 1995, pages 631 637, 1995.

A. V. Moura T. H. Yunes and C. C. de Souza. Hy-
brid column generation approaches for urban transit
crew management problems. Transportation Science,

39(2):273 288, 2005.

P. van Hentenryck. The OPL Optimization Program-
ming Language. MIT Press, 1999.

P. Van Hentenryck and L. Michel. Constraint-Based
Local Search. MIT Press, Cambridge, 2005.

Anno I, N° 1/2, Marzo-Giugno 2006

