
1 Introduction

Darwinian evolution is probably the most intriguing and
powerful mechanism of nature mankind has ever discov-
ered. Its power is evident in the impressive level of adapta-
tion reached by all species of animals and plants in nature.
It is intriguing because despite its simplicity and random-
ness it produces incredible complexity in a way that ap-
pears to be very directed, almost purposeful. Like forother
powerful natural phenomena, it is no surprise then that sev-
eral decades ago a few brilliant researchers in engineer-
ing and computer science started wondering whether they
could steal the secrets behind Darwinian evolution and use
them to solve problems of practical interest in a variety of
application domains. These people were pioneers of a new
field, which after more than 30 years from its inception is
now big and well established and goes under the name of
Genetic and Evolutionary Computation (GEC).

An almost endless number of results and applications
of evolutionary algorithms have been reported in the liter-
ature that show that the ideas of these pioneers were in-
deed right. Nowadays evolutionary techniques can rou-
tinely solve problems in domains such as automatic design,
optimisation, pattern recognition, control and many others.

2 What is Genetic and Evolutionary Com-
putation

What were the main secrets behind Darwinian evolution,
that the pioneers of GEC stole to make them the propelling
fuel of evolutionary computation processes?

Inher itance: individuals have a genetic representation (in
nature, the chromosomes and the DNA) such that it
is possible for the offspring of an individual to inherit
some of the features of its parent.

Var iation: the offspring are not exact copies of the par-
ents, but instead reproduction involves mechanisms
that create innovation, as new generations are born.

Natural Selection: individuals best adapted to the envi-
ronment have longer life and higher chances of mat-
ing and spreading their genetic makeup.

Clearly, there is a lot more to natural evolution than these
forces. However, like for many other nature-inspired tech-
niques, not all the details are necessary to obtain work-
ing models of a natural system. The three ingredients
listed above are in fact sufficient to obtain artificial sys-
tems showing the main characteristic of natural evolution:
the ability to search for highly fit individuals.

For all these ingredients (representation, variation, se-
lection) one can focus on different realisations. For ex-
ample, in nature variation is produced both through mu-
tations of the genome and through the effect of sexually
recombining the genetic material coming from the parents
when obtaining the offspring’s chromosomes (crossover).
This is why many different classes of evolutionary algo-
rithms have been proposed over the years. So, depend-
ing on the structures undergoing evolution, on the repro-
duction strategies and the variation (or genetic) opera-
tors adopted, and so on, evolutionary algorithms can be
grouped into: Genetic Algorithms (GAs) [2], Genetic Pro-
gramming (GP) [3], Evolution Strategies (ESs) [8, 9], etc.

The inventors of these different evolutionary algorithms
(or EAs for brevity) have all had to make choices as to
which bits of nature have a corresponding component in
their algorithms. These choices are summarised in the
nature-to-computer mapping shown in Table 1. That is,
the notion of individual in nature corresponds to a tenta-
tive solution to a problem of interest in an EA. The fitness
(ability to reproduce and have fertile offspring that reach
the age of reproduction) of natural individuals corresponds
to the objective function used to evaluate the quality of
the tentative solutions in the computer. The genetic vari-
ation processes of mutation and recombination are seen
as mechanisms (search operators) to generate new tenta-
tive solutions to the problem. Finally, natural selection is
interpreted as a mechanism to promote the diffusion and

94 Anno III, N° 1/2, Marzo-Giugno 2006

CONTRIBUTI SCIENTIFICI

GENETIC AND EVOLUTIONARY COMPUTATION

STEFANO CAGNONI

Dipartimento di Ingegneria dell’Informazione - Università degli Studi di Parm a

RICCARDO POLI

Department of Computer Science - University of Essex, UK

Table 1: Nature-to-computer mapping at the basis of evo-
lutionary algorithms.

Nature Computer

Individual Solution to a problem
Population Set of solutions

Fitness Quality of a solution
Chromosome Representation for a solution

(e.g. set of parameters)
Gene Part of the representation of

a solution (e.g. parameter or
degree of freedom)

Crossover Search operators
Mutation

Natural Selection Promoting the reuse of
good (sub-)solutions

Algor ithm 1 Generic evolutionary algorithm.
1: Initialise population
2: Evaluate the fitness of each population member
3: loop
4: Select sub-population for reproduction on the basis

of fitness (Selection)
5: Copy some of the selected individuals without

change (Cloning or Reproduction)
6: Recombine the “genes” of selected parents

(Recombination or Crossover)
7: Mutate the offspring population stochastically (Mu-

tation)
8: Evaluate the fitness of the new population
9: Select the survivors on the basis of their fitness

10: If stopping criterion is satisfied then exit loop
11: end loop

mixing of the genetic material of individuals representing
good quality solutions, and, therefore, having the potential
to create even fitter individuals (better solutions).

Despite their differences, most EAs have the general
form shown in Algorithm 1, although not all the steps in
Algorithm 1 are present in all evolutionary algorithms. For
example, in modern GAs [7] and in GP, step (4) is part of
steps (5) and (6), while step (9) is absent. This algorithm
is said to be generational because there is no overlap be-
tween generations (i.e. the offspring population always re-
places the parent population). In generational EAs cloning
is used to simulate the survival of parents for more than
one generation.

In the following we will analyse the various components
of an EA in more detail, mainly concentrating on the ge-
netic algorithm, although most of what we will say also
applies to other paradigms.

2.1 Representations

Traditionally, in GAs, solutions are encoded as binary
strings. Typically an adult individual (a solution fora prob-
lem) takes the form of a vectorof numbers. These are often
interpreted as parameters (for a plant, for a design, etc.),
but in combinatorial optimisation problems these numbers
can actually represent configurations, choices, schedules,
paths and so on. Anything that can be represented on a dig-
ital computer can also be represented in a GA using a bi-
nary representation. This is why, at least in principle, GAs
have a really broad applicability. However, other, non-
binary representations are available, which may be more
suitable, e.g., for problems with real-valued parameters.

Because normally the user of a GA has no ideas as to
what constitutes a good initial set of choices/parameters
for adult individuals (tentative solutions to a problem), the
chromosomes to be manipulated by the GA are normally
initialised in an entirely random manner. That is, the initial
population is a set of random binary strings or of random
real-valued vectors.

2.2 Selection in GAs

Selection is the operation by which individuals (i.e. their
chromosomes) are selected for mating or cloning. To em-
ulate natural selection, individuals with a higher fitness
should be selected with higherprobability. There are many
models of selection. We briefly describe three of the most
frequently used ones below.

Fitness proportionate selection, besides being the most
direct translation into the computational model of the prin-
ciples of evolution, is probably the most widely used selec-
tion scheme. This works as follows. Let N be the popula-
tion size, fi the fitness of individual i, and f̄ = 1

N

∑
j fj

the average population fitness. Then, in fitness proportion-
ate selection, individual i is selected for reproduction with
a probability:

pi =
fi∑
j fj

=
fi

f̄N
.

In normal GAs populations are not allowed to grow or
shrink, so N individuals have to be selected for reproduc-
tion. Therefore, the expected number of selected copies of
each individual is:

Ni = piN = fi/f̄ .

So, individuals with an above-average quality (fi > f̄)
tend to be selected more than once for mating or cloning,
while individuals below the average tend not to be used.

Tournament selection, instead, works as follows. To se-
lect an individual, first a group of T (T ≥ 2) random in-
dividuals is created. Then the individual with the highest
fitness in the group is selected, the others are discarded
(tournament).

CONTRIBUTI SCIENTIFICI

95Anno III, N° 1/2, Marzo-Giugno 2006

Another alternative is rank selection where individuals
are first sorted (ranked) on the ground of their fitness, so
that if an individual i has fitness fi > fj than its rank is
i < j. Then each individual is assigned a probability of
being selected pi taken from a given distribution (typically
a function monotonically decreasing with rank), with the
constraint that

∑
i pi = 1.

2.3 Operators

Evolutionary algorithms work well only if theirgenetic op-
erators allow an efficient and effective search of the space
of tentative solutions.

One desirable property of recombination operators is
to guarantee that two parents sharing a useful common
characteristic always transmit such a characteristic to their
offspring. Another important property is to also guaran-
tee that different characteristics distinguishing two parents
may be all inherited by their offspring. For binary GAs
there are many crossover operators with these properties.

One-point crossover, for example, aligns the two parent
chromosomes (bit strings), then cuts them at a randomly
chosen common point and exchanges the right-hand-side
(or left-hand-side) sub-chromosomes (see Figure 1(a)). In
two-point crossover chromosomes are cut at two randomly
chosen crossover points and their ends are swapped (see
Figure 1(b)). A more modern operator, uniform crossover,
builds the offspring, one bit at a time, by selecting ran-
domly one of the corresponding bits from the parents (see
Figure 1(c)).

Normally, crossover is applied to the individuals of a
population with a constant probability pc (often pc ∈
[0.5, 0.8]). Cloning is then applied with a probability 1−pc

to keep the number of individuals in each generation con-
stant.

Mutation is the second main genetic operator used in
GAs. A variety of mutation operators exist. Mutation typ-
ically consists of making (usually small) alterations to the
values of one or more genes in a chromosome. Often mu-
tation is applied to the individuals produced by crossover
and cloning before they are added to the new population.
In binary chromosomes mutation often consists of invert-
ing random bits of the genotypes (see Figure 2). The main
goal with which mutation is applied is the preservation of
population diversity, since diversity prevents the evolution-
ary search from stagnating. However, due to its random
nature, mutation may have disruptive effects onto evolu-
tion if it occurs too often. Therefore, in GAs, mutation is
usually applied to genes with a very low probability.

In real-valued GAs chromosomes have the form x =
〈x1, . . . , x�〉 where each gene xi is represented by a
floating-point number. In these GAs crossover is often
seen as an interpolation process in a multi-dimensional Eu-
clidean space. So, the components of the offspring o are
calculated from the corresponding components of the par-

1010101010

1110001110

Crossover
Point

1010101110

1110001010

Parents Offspring

Crossover
Point

(a)

1010101010

1110001110

Crossover
Points

1110101110

1010001010

Parents Offspring

Crossover
Points

(b)

1010101010

1110001110
1110101110

Parents Offspring

(c)

Figure 1: Three crossover operators for binary GAs: (a)
one point crossover, (b) two point crossover, (c) uniform
crossover.

ents p′ and p′′ as follows:

oi = p′i + r(p′′i − p′i)

where r is a random number in the interval [0, 1]. Alterna-
tively crossover can be seen as the exploration of a multi-
dimensional hyper-parallelepiped defined by the parents,
that is the components oi are chosen uniformly at random
within the intervals

[min(p′i, p
′′
i),max(p′i, p

′′
i)].

Mutation is often seen as the addition of a small ran-
dom variation (e.g. Gaussian noise) to a point in a multi-
dimensional space.

1010101010

Mutation
Site

1011101010

Mutation
Site

Figure 2: Bitwise mutation in binary GAs.

CONTRIBUTI SCIENTIFICI

96 Anno III, N° 1/2, Marzo-Giugno 2006

2.4 Other GEC Paradigms

As mentioned before, the principles on which GAs are
based are also shared by many other EAs. However, the
use of different representations and operators has led to
the development of a number of paradigms, each having
its own peculiarities. With no pretence of being exhaus-
tive, in the following we will briefly mention two important
paradigms, other than GAs.

Genetic programming [3, 6] is a variant of GA in which
the individuals being evolved are syntax trees, typically
representing computer programs. The trees are created
using user-defined primitive sets, which typically include
input variables, constants and a variety of functions or in-
structions. The syntax trees are manipulated by specialised
forms of crossoverand mutation that guarantee the syntac-
tic validity of the offspring. The fitness of the individual
trees in the population is evaluated by running the corre-
sponding programs (typically multiple times, for different
values of their input variables).

Evolution strategies [8, 9] are real-valued EAs where
mutation is the key variation operator (unlike GAs). Muta-
tion typically consists of adding zero-mean Gaussian devi-
ates to the individuals being optimised, with the mutation’s
standard deviation being varied dynamically so as to max-
imise the performance of the algorithm.

3 State of the ar t

3.1 Popular ity of the Field

Among AI and AI-related disciplines, GEC is presently
one of the most active. This is testified, for example, by:

• the numerous dedicated conferences and workshops
(around 20 annual or biannual events) including the
Genetic and Evolutionary Computation Conference
(GECCO), the largest conference in the field, with
around 600 attendees, organised by ACM SigEvo, and
the large IEEE Congress on Evolutionary Computa-
tion (CEC);

• the several dedicated journals including Evolution-
ary Computation from MIT Press (the oldest jour-
nal in the field), the Journal on Genetic Program-
ming and Evolvable Machines from Kluwer (which
is specialised on Genetic Programming and evolvable
hardware), and the IEEE Transactions on Evolution-
ary Computation;

• the numerous large bibliographies of GEC literature,
including, forexample, the large collection of AI bib-
liographies in “The Collection of Computer Science
Bibliographies” available at http://liinwww.
ira.uka.de/bibliography/Ai/, where the
“Genetic Programming bibliography” by itself, which
covers only papers on that specific GEC paradigm, is

the third largest among the ones which are still up-
dated on a regular basis (with 4919 papers at the time
of writing), fifth overall;

• the constant stream of new books and doctoral theses
on the subject.

3.2 International Situation

It is very difficult to say precisely when and where the
field of Genetic and Evolutionary Computation was orig-
inated. Indeed, especially for the least recent evolution-
ary paradigms, as often happens, seminal ideas can be
found in papers by authors who were not the ones who
have finally popularised them (see [1] fora comprehensive
collection). Considering the latter as the actual ’fathers’
of GEC, Genetic Algorithms [2], as well as Genetic Pro-
gramming [3], were first studied and developed as inde-
pendent research topics in the United States, while Evo-
lution Strategies [8, 9], developed in Europe, already con-
tain ideas which will be used later in GAs and GP. So, we
can say that Germany and the United States are the coun-
tries where it all started. However, GEC research is today
performed in many, many countries worldwide. For ex-
ample, the two traditional major actors in GEC (USA and
Germany) have now been joined at the top by the United
Kingdom, where research in AI and related fields has al-
ways been extremely active.

From the point of view of research topics, after the
typical pioneering times of rapid development in which
any empirical study or application of any paradigm to
any problem was considered interesting and publishable in
its own right, research in GEC has become more mature
and structured into well defined topics. Such a classifi-
cation comprises a set of theoretical topics regarding ba-
sic studies on the different GEC paradigms (Genetic Algo-
rithms, Genetic Programming, Evolution Strategies, Evo-
lutionary Programming, Particle Swarm Optimisers, Clas-
sifier Systems, Ant Algorithms, Artificial Immune Sys-
tems, etc.). Other research areas span more than one
of these fundamental paradigms (Coevolution, Evolution-
ary Multi-Objective Optimisation, Evolutionary Combi-
natorial Optimisation, Hybridisation, Evolutionary Meta-
heuristics, Memetic Algorithms, etc.), and these are also
hot theoretical research fields. Finally, a large set of
more application-oriented topics are popular research ar-
eas, such as Evolvable Hardware, Evolutionary Robotics,
Evolutionary Image Analysis and Signal Processing and,
more generally, Real-World Applications at large. Some
of these areas have recently grown significantly and can be
considered independent GEC subfields in their own right.

3.3 GEC research in Italy

On a national basis, unfortunately but unsurprisingly, the
main Italian researchers in the field work for foreign insti-
tutions. Forexample, Riccardo Poli (UK) is a world leader

CONTRIBUTI SCIENTIFICI

97Anno III, N° 1/2, Marzo-Giugno 2006

in the field of Genetic Programming (being second only to
John Koza for number of publications in this area), Marco
Dorigo (Belgium) is the inventor and world leader of Ant
Colony Optimisation, Marco Tomassini (Switzerland) is a
leader on evolutionary algorithms and complex systems,
etc.

However, progressively this situation has being balanced
by an increasingly active national community, in which
more than ten groups are specifically active in the field (at
the Universities or Polytechnic Schools of Milan, Turin,
Parma, Venice, Naples, Salerno, Calabria, Catania, to
name a few), which made it possible to organise successful
first edition of GSICE (Italian Workshop on Evolutionary
Computation) in 2005 in Milan, which will be followed by
the upcoming editions in Siena (2006) and Catania (2007).

The main research topics on which the activity of Italian
researchers in GEC is focused are: genetic programming
theory (R. Poli, Tomassini, Vanneschi), learning classifier
systems (Lanzi), ant algorithms (Dorigo, Gambardella),
particle swarm optimisation (R. Poli), evolutionary mod-
els in artificial life (Nicosia, I. Poli), hybrid systems (Tet-
tamanzi), coevolution (Cagnoni, Vanneschi), evolutionary
robotics (Floreano, Nolfi), evolvable hardware (Squillero).
The main application fields are biology (Marchiori), game
strategy (Squillero), finance (Tettamanzi), computervision
and pattern recognition (Cagnoni, Cordella, De Falco, R.
Poli).

4 Open problems and research directions

Despite its increasing degree of maturity, there are still
many partially unanswered questions which face re-
searchers in GEC. Here we limit ourselves to mention only
a few of the main open challenges:

• How do we classify GEC algorithms? When do we
expect the behaviour and performance of two dif-
ferent evolutionary systems to be qualitatively (and
maybe at some point quantitatively) similarand why?

• How do we classify problems? When do we expect
the performance of a particular algorithm on two dif-
ferent problems to be the substantially the same and
why?

• Although the development of mathematical models of
evolutionary equations has been rapid there remains a
disquieting lack of tools with which we obtain solu-
tions to evolution equations. In addition, these models
have immense numbers of degrees of freedom, which
makes them hard to simulate even for the most pow-
erful computers. So, mathematical models can shed
only some light on EA dynamics.

• How can we develop models of EAs that can provide
theoretically-sound recipes for practitioners, such as
which operators, fitness function, search algorithm,

population size, number of generations, number of
runs, crossover probability, etc. one should use for
a given problem or a given class of problems.

• Can we obtain open-ended evolution in EAs, as in na-
ture?

5 Interactions with AI

GEC is intrinsically a transversal field of research, since,
on the one side, its techniques are based on biological mod-
els, but also, on the other side, since it provides a set of
tools which can be effectively applied to other disciplines.
Quite naturally there are several examples of synergetic ap-
plications [10] of GEC techniques along with other tech-
niques which are comprised in the set of disciplines (Neu-
ral Networks, Fuzzy Sets, Probabilistic Networks) usually
termed as Computational Intelligence (CI).

Although CI is considered by many the most modern
form of AI, we believe that a lot of the work currently
going on in GEC can be seen as good, old-fashioned AI.
In particular, when EAs are successfully used in practi-
cal applications, in many cases some credit for the suc-
cess goes to the specialised representation, operators and
fitness function designed to tackle the problem, rather than
to the fact that this or that EA was used to perform the
search. That is, the search is often successful thanks to
the good knowledge engineering efforts of the users of the
EA. This should not come as a surprise: after all AI peo-
ple has always known that a good representation, good ex-
pansion operators and good heuristics can tame search and
avoid the problems inherent in exponentially large search
spaces. GEC researchers, however, have started accepting
these good-old-fashioned AI guidelines after painfully di-
gesting a now-famous result that goes under the name of
No-free Lunch Theorem for search [11].

6 Applications

Getting machines to produce human-like results is the rea-
son for the existence of AI and machine learning. How-
ever, it has always been very difficult to assess how much
progress these fields have made towards their ultimate
goal. Turing understood the need to evaluate objectively
the behaviour exhibited by machines, to avoid human bi-
ases when assessing their intelligence. This led him to pro-
pose an imitation game, now known as the Turing test for
machine intelligence. Unfortunately, the Turing test is not
usable in practice, and so, it has become clear that there is
a need for more workable objective tests for progress.

John Koza [4] recently proposed to shift the attention
from the notion of intelligence to the notion of human com-
petitiveness. An automatically-created result is considered
“human-competitive” if it satisfies at least one of the eight
criteria below:

CONTRIBUTI SCIENTIFICI

98 Anno III, N° 1/2, Marzo-Giugno 2006

1. The result was patented as an invention in the past, is
an improvement over a patented invention, or would
qualify today as a patentable new invention.

2. The result is equal to or better than a result that was
accepted as a new scientific result at the time when it
was published in a peer-reviewed scientific journal.

3. The result is equal to or better than a result that was
placed into a database orarchive of results maintained
by an internationally recognised panel of scientific ex-
perts.

4. The result is publishable in its own right as a new sci-
entific result, independent of the fact that the result
was mechanically created.

5. The result is equal to or better than the most recent
human-created solution to a long-standing problem
for which there has been a succession of increasingly
better human-created solutions.

6. The result is equal to or better than a result that was
considered an achievement in its field at the time it
was first discovered.

7. The result solves a problem of indisputable difficulty
in its field.

8. The result holds its own or wins a regulated compe-
tition involving human contestants (in the form of ei-
ther live human players or human-written computer
programs).

Over the years, a list of tens of results have passed
the human-competitiveness test (see [5] for a recent
list). Also, since 2004, a competition is held annually
at GECCO (termed the “Human-Competitive awards -
the ’Humies’ ”). The prize ($ 10,000) is awarded to
automatically-created applications which have produced
results which are equivalent to human achievements or,
better, are unpaired by humans. The Gold Prizes in 2004
and 2005 were awarded to applications of GEC to high-
tech fields such as an antenna for deployment on NASA’s
Space Technology 5 Mission (see Figure 3), automatic
quantum computer programming, two-dimensional pho-
tonic crystals design, applications to attosecond dynamics
of high-harmonic generation, shaped-pulse optimisation of
coherent soft-x-rays. The 2006 competition is still to be
held at the time of writing.

Some pre-2004 human-competitive results include:

• Creation of quantum algorithms including: a better-
than-classical algorithm for a database search prob-
lem and a solution to an AND/OR query problem

• Creation of algorithms for the transmembrane seg-
ment identification problem for proteins

Figure 3: Award winning human-competitive antenna de-
sign produced by an evolutionary algorithm.

• Synthesis of analogue circuits (with placement and
routing, in some cases), including: 60 and 96 decibel
amplifiers; circuits for squaring, cubing, square root,
cube root, logarithm, and Gaussian functions; a cir-
cuit for time-optimal control of a robot; an electronic
thermometer; a voltage-current conversion circuit

• Creation of a cellular automata rule for the majority
classification problem that is better than all known
rules written by humans

• Synthesis of topology for controllers, including: a
PID (proportional, integrative, and derivative) and
a PID-D2 (proportional, integrative, derivative, and
second derivative) controllers; PID tuning rules
that outperform the Ziegler-Nichols and Astrom-
Hagglund tuning rules; three non-PID controllers that
outperform a PID controller that uses the Ziegler-
Nichols or Astrom-Hagglund tuning rules

Even from the short list provided, which is far from be-
ing exhaustive, nor sufficient to fully describe their poten-
tial, the use of GEC techniques as invention machines ap-
pears to be effective, and subject to furtherincrease in com-
petitiveness in a future, which the following closing section
tries to forecast.

7 Conclusions

Let try to look a bit ahead into a not too distant future, say
2012, and let us make some predictions.

We start from some simple back-of-an-envelope calcu-
lations. In 2012 CPUs will be 25 times faster than today.
A Beowulf desktop computer (12 CPUs) will be 300 times
faster than current PCs. A Beowulf tower computer (96
CPUs) will be 2400 times faster than current PCs and ap-
prox 10 times faster than the 1000 node supercomputer
Koza used to obtain his human competitive results (new
inventions). These were produced in approx 1 week of
computer time.

CONTRIBUTI SCIENTIFICI

99Anno III, N° 1/2, Marzo-Giugno 2006

It follows from this that in 2012 it will be possible to
produce patentable new inventions in a day on a 96 node
Beowulf workstation! So, by 2012 it is not unthinkable that
EAs will be used routinely as invention machines, design
machines, optimisers and problem solvers.

So, GEC has effectively started fulfilling the AI dream
by providing us with a systematic method, based on Dar-
winian evolution, for getting computers to automatically
solve difficult problems for us. To do so, EAs simply re-
quire a high-level statement of what needs to be done (and
enough computing power). Today GEC certainly cannot
produce computers that would pass the full Turing test for
machine intelligence, but GEC has been able to solve tens
of difficult problems with human-competitive results, and
we should expect to see this trend accelerate.

These are small steps towards fulfilling the founders of
AI dreams, but they are also early signs of things to come.
By 2012 EAs and AI techniques will be able to routinely
and competently solve important problems forus in a vari-
ety of specific domains of application, becoming essential
collaborators for many of human activities.

This will be a remarkable step forward towards achiev-
ing true, human-competitive machine intelligence.

REFERENCES

[1] D.B. Fogel, editor. Evolutionary Computation. The
Fossil Record. Selected Readings on the History of
Evolutionary Computation. IEEE Press, 1998.

[2] J. Holland. Adaptation in Natural and Artificial Sys-
tems. University of Michigan Press, Ann Arbor,
USA, 1975.

[3] J. R. Koza. Genetic Programming: On the Program-
ming of Computers by Natural Selection. MIT Press,
Cambridge, MA, USA, 1992.

[4] J.R. Koza, F.H Bennett III, and O. Stif felman. Ge-
netic programming as a Darwinian invention ma-
chine. In Riccardo Poli, Peter Nordin, William B.
Langdon, and Terence C. Fogarty, editors, Genetic
Programming, Proceedings of EuroGP’99, volume
1598 of LNCS, pages 93–108, Goteborg, Sweden, 26-
27 May 1999. Springer-Verlag.

[5] J.R. Koza and R. Poli. Genetic programming. In Ed-
mund K. Burke and Graham Kendall, editors, Search
Methodologies: Introductory Tutorials in Optimiza-
tion and Decision Support Techniques, chapter 5.
Springer, 2005.

[6] W.B. Langdon and R. Poli. Foundations of Genetic
Programming. Springer-Verlag, 2002.

[7] M. Mitchell. An introduction to genetic algorithms.
Cambridge MA: MIT Press, 1996.

[8] I. Rechenberg. Evolutionsstrategie: Optimierung
technischer Systeme nach Prinzipien der biologis-
chen Evolution. Frommann–Holzboog, Stuttgart,
1973.

[9] H.-P. Schwefel. Numerical Optimization of Com-
puter Models. Wiley, Chichester, 1981.

[10] A. Tettamanzi and M. Tomassini. Soft Computing:
Integrating Evolutionary, Neural and Fuzzy Systems.
Springer, Berlin, Heidelberg, New York, New York,
2001.

[11] D.H. Wolpert and W.G. Macready. No free lunch the-
orems for optimization. IEEE Transactions on Evo-
lutionary Computation, 1(1):67–82, April 1997.

APPENDIX A Pointers to Fur ther Reading
in GEC

• D.E. Goldberg. Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley,
Reading, Massachusetts, 1989.
A classic book on genetic algorithms and classifier
systems.

• D.E. Goldberg. The Design of Innovation: Lessons
from and for Competent Genetic Algorithms. Kluwer
Academic Publishers, Boston, 2002.
An excellent, long-awaited follow up of Goldberg’s
first book.

• M. Mitchell, An introduction to genetic algorithms, A
Bradford Book, MIT Press, Cambridge, MA, 1996.
A more modern introduction to genetic algorithms.

• J.H. Holland, Adaptation in Natural and Artificial
Systems, second edition, A Bradford Book, MIT
Press, Cambridge, MA, 1992.
Second edition of a classic from the inventor of ge-
netic algorithms.

• T.Bäck and H.-P. Schwefel. An overview of evolu-
tionary algorithms for parameter optimization. Evo-
lutionary Computation, 1(1):1–23, 1993.
An introduction to parameter optimisation by EAs.

• T. Bäck, D. B. Fogel and T. Michalewicz, Evolution-
ary Computation 1: Basic Algorithms and Operators,
Institute of Physics Publishing, 2000.
A modern introduction to evolutionary algorithms.
Good both for novices and more expert readers.

• J.R. Koza. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection.
MIT Press, 1992.
The bible of GP by the founder of the field. Followed
by GP II (1994), GP III (1999) and GP IV (2003).

CONTRIBUTI SCIENTIFICI

100 Anno III, N° 1/2, Marzo-Giugno 2006

• W. Banzhaf, P. Nordin, R.E. Keller and Frank D.
Francone, Genetic Programming – An Introduction;
On the Automatic Evolution of Computer Programs
and its Applications, Morgan Kaufmann, 1998.
An excellent textbook on GP.

• W. B. Langdon and R. Poli, Foundations of Genetic
Programming, Springer, Feb 2002.
The only book entirely devoted to the theory of GP
and its relations with the GA theory.

• Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO).
Born in 1999 from the “recombination” of the In-
ternational Conference on Genetic Algorithms and
the Genetic Programming Conference, GECCO is the
largest conference in the field.

• Proceedings of the Foundations of Genetic Algo-
rithms (FOGA) workshop.
FOGA is a biannual, small but very-prestigious and
highly-selective workshop. It is mainly devoted to the
theoretical foundations of EAs.

• Proceedings of the Congress on Evolutionary Com-
putation (CEC).
CEC is large conference underthe patronage of IEEE.

• Proceedings of Parallel Problem Solving from Nature
(PPSN).
This is a large biannual European conference, proba-
bly the oldest of its kind in Europe.

• Proceedings of the European Conference on Genetic
Programming.
EuroGP was the first European event entirely devoted
to Genetic Programming. Run as a workshop in 1998
and 1999, it became a conference in 2000. It has now
reached its tenth edition.

APPENDIX B Some Web Resources

• http://www.genetic-programming.com/
and
http://www.genetic-programming.org/
Genetic Programming Inc.,

• http://www.cs.bham.ac.uk/∼wbl/
biblio/
and
http://liinwww.ira.uka.de/
bibliography/Ai/genetic.
programming.html
GP bibliography maintained by W. B. Langdon

• http://evonet.lri.fr/CIRCUS2/node.
php?node=1
The EvoNet online tutorial

CONTRIBUTI SCIENTIFICI

101Anno III, N° 1/2, Marzo-Giugno 2006

