CONTRIBUTI SCIENTIFICI

KERNEL MACHINES,

AND GRAPHICAL MODELS

Dipartimento di Sistemi e Informatica - Universita degli Studi di Firenze

Dipartimento di Matematica Pura ed Applicata - Universita degli Studi di Padova

ALESSANDRO SPERDUTI

ANTONINA

Dipartimento di Informatica - Universita degli Studi di Padova

1 Statistical and Probabilistic Learning

Learning is fundamental to intelligence as it allows to
acquire knowledge from the environment by using data.
Several paradigms and approaches are available for defin-
ing the learning problem. In this paper we mainly focus
on methods based on statistical and probabilistic assump-
tions.

In the statistical setting, a learning algorithm is given a
set of examples obtained by sampling from a fixed but un-
known distribution. Most often, for the sake of developing
simple models, examples are also assumed to be indepen-
dently sampled, although it is not always reasonable to be-
lieve that this is actually the case. The purpose of learning
is to use the available data to characterize the unknown dis-
tribution from which the examples were sampled. Several
paradigms can be defined for this purpose.

In the case of supervised learning, training data con-
sists of input-output pairs D = {(z1,v1),- -+, (Zm, Ym)}
with z; € X and y; €). The set X is called the
input (or instance) space and can be any set. The set
Y is called the output (or target) space. The two sim-
plest forms of supervised learning are binary classi cation,
where Y = {—1, 1}, and regression, where) is the set of
real numbers. The case where) is itself structured has
received less attention until recently. Many pattern recog-
nition and related prediction tasks can be formulated ac-
cording to this paradigm. The fundamental underlying as-
sumptions is that a joint distribution characterizes the re-
lation between inputs and outputs, naturally allowing for
noise in the examples and their labels. This would be im-
possible in the so-called reduced learning model where it
is assumed that examples are sampled in the input space
and labels are deterministically assigned by a fixed but un-
known function. The general goal of supervised learning
is to estimate the conditional density p(y|z), although very
often it is sufficient to find a function f : X —) that well
approximates the probabilistic dependency between inputs
and outputs (e.g. by making sure that a given loss function

72

NEURAL NETWORKS,

STARITA

is minimized). The class of functions that is searched for a
solution is called the hypothesis space.

Unsupervised learning aims at directly estimating the
distribution that underlies the data. The goal in this case is
to estimate p(z). Unsupervised learning is typically useful
to obtain interesting and compressed representations of the
data. This may be achieved, for example, by identifying
clusters, sub-manifolds or other regions of interest in high-
dimensional spaces, or by determining the hidden structure
of dependencies between causes and effects. Unsupervised
learning algorithms can be sometimes used also for solv-
ing classification tasks. This basically involves modeling
class conditional densities, i.e. the generative distributions
p(z|y) behind each class y. Note that such a generative di-
rection can be seen as reversed with respect to the discrimi-
nant direction taken by the supervised learning approaches
mentioned above.

In the case of semi-supervised learning, some examples
are labeled with an output target and some are not. This
setting is typically useful to take advantage of unlabeled
data that may be available at lower cost than labeled data.
When this is the case, semi-supervised learning takes the
form of learning from labeled and unlabeled data. In other
situations, the set of instance on which predictions are re-
quired might be known during the training phase, leading
to a formulation called transductive learning.

2 State-of-the-art Methods

Statistical and probabilistic learning is a very active re-
search area. Here we restrict our focus to some of the most
popular methods.

2.1 Kernel Methods

A Mercer kernel is a positive semi-definite symmetric
function that generalizes the notion of inner product to ar-
bitrary domains—see e.g., [38] for details. Kernels are
used in machine learning to measure the similarity between

Anno Ill, N° 1/2, Marzo-Giugno 2006

CONTRIBUTI SCIENTIFICI

two instances so that we can make predictions about future
instances by taking into account their similarity to training
examples. It can be shown that for any Mercer kernel K
there exists a map ® : X — (2 from the instance space to
the Hilbert space of square-summable sequences, such that
K(x,2") = (®(x), ®(z')). This map is usually called the
feature map. Intuitively, the similarity between two exam-
ples will increase with the number of features they have in
common. Note that we do not need to explictly represent
®(x) if we know how to compute the kernel. This nice
property is generally referred to as the kernel trick.

2.2 Empirical Risk Minimization and Regular-
ization

A simple and straightforward way of solving the super-
vised learning problem is based on empirical risk mini-
mization (ERM). In this approach, each hypothesis is eval-
uated by observing its behavior on the available training
data. Hence, an ERM learner will search the hypothesis
space to find a solution h by minimizing the value of a
real valued loss function on the training set, where the loss
on a single example measures the cost incurred in predict-
ing h(z) when the target was in facts y. Although intu-
itively appealing, ERM is fundamentally flawed by its lack
of uniqueness and stability. In other words, it generally
attempts to solve a mathematically ill-posed problem. To
convince, think about examples consisting of pairs of real
numbers and suppose that the hypothesis space is the set of
polynomials in z. The loss could be in this case the squared
error between y and h(x). There are clearly infinite solu-
tions if we allow polynomials of degree higher than the
number of examples. In addition, some of these solution
may be very unstable in the sense that they may change
significantly when examples are changed by small pertur-
bations, or when a small fraction of examples is deleted
from the training set [30]. Common sense in this case tells
us that to avoid overfitting we should avoid this kind of
solutions that need to oscillate wildly to perfectly fit the
examples. We can penalize these unstable solutions if we
have a way of measuring their complexity. Towards this
goal, Vapnik [43] proposed the abstract idea of structural
risk minimization by which an algorithm should search a
minimizer of the empirical risk over a sequence of hypoth-
esis spaces of increasing complexity.

When using kernel methods in supervised learning,
the hypothesis space is the so-called reproducing kernel
Hilbert space (RKHS) associated with K. The good news
is that we now have a very simple measure for the com-
plexity of an hypothesis h via its norm in the RKHS,
||h]|x. This allows us to modify ERM into a so-called
Tikhonov regularized problem by adding p||h|| k to the av-
erage training loss. p is a positive regularization constant
that should be chosen according to the noise that is be-
lieved to affect the data. Popular algorithms in this frame-
work include support vector machines (SVM) [43] and ker-

Anno I, N° 1/2, Marzo-Giugno 2006

nel ridge regression. The representer theorem shows that
the solution to the regularized problem can be expressed
as f(z) = YI", ;K (z,2;). In particular, in the case of
SVM classification, each term in the sum takes on the form
oy K (z, x;), i.e. the solution is a weighted average of
data targets, where the weights are formed by multiplying
a coefficient «; that measures the importance of the i-th
example and a term K (x, x;) that measures the similarity
between the input portion of each example and the new
data point z. Other supervised kernel methods (such as the
kernelized voted perceptron [10]) output solution that can
be expressed in this way.

2.3 Artificial Neural Networks

Artificial neural networks constitute a family of nonlinear
data modeling tools that can be used both in supervised
and unsupervised settings. The computation of a neural
network is traditionally described in terms of a data-flow
process performed by an interconnected set of computing
units in a form of network. A neural unit computes a sim-
ple nonlinear function o() of the weighted sum, according
to weights w;, of its inputs x;, out = (>, wiz; +),
where 6 is a threshold value. Adopting different designs
for the neural units, i.e. using a o(-) with a “step” shape, or
a non-linear squashing function like the sigmoidal-logistic
function, or a linear function, we obtain different neu-
ral models. Specifically, the sigmoidal-logistic function
has the property to be a smoothed differentiable thresh-
old function, and thus amenable to gradient based learning
procedures. The architecture of a neural network defines
the topology of the connections among the units. In the
context of supervised learning, the most renewed model
is the well-know MLP (feedforward multi-layer percep-
tron) architecture: the units are connected by weighted
links and they are organized in the form of layers. The
input layer is simply the source of the input that projects
onto one or more hidden layers of units. The last hid-
den layer projects onto the output layer. According to the
definition of hypothesis space given above, a MLP real-
izes a mathematical parameterized hypothesis in the form
h(z) = gw(z), where z € R is the input pattern in
the form of fixed-size vector, WV is a set of real-valued
parameters (the weights) whose values determine the spe-
cific computed function, and gyy : R" — R?, were z
is the number of output components. For instance, a two-
layer feedforward neural network with a single output (i.e.,
z = 1) and m “hidden” units, computes a function of
the type h(u) = (3L, wya(3o1_) whitdere,)) =
5(wout . 5(Wm‘ddenx)) where Whidden c R™ x R
is the weight matrix from the input to the hidden layer,
w°"" € R™ is the weight vector from the hidden layer to
the output layer (recall that in general we have z > 1), 5(+)
is a function that applies component-wise a sigmoidal non-
linear activation function o(u), e.g. o(u) = ﬁ, and

y = g(Whiddeng) ¢ R™ is the so called hidden activity

73

CONTRIBUTI SCIENTIFICI

vector. In this case, the set of parameters)V is constituted
by both the elements of W "#44¢" and the elements of w°"*.

Hence, the hypothesis space that characterizes the neural
model is the space of all functions that can be represented
by assigning specific values to the parameters in W, i.e.
the weight values of the given neural network architecture.
This allows the model to represent a rich space of non-
linear functions, making neural networks a good choice for
learning discrete and continuous functions whose general
form is unknown in advance. In particular, approximation
theory (Theorem by Cybenko, see [16]) formally supports
the generality of this class of hypotheses: this class of func-
tions is sufficient to approximate continuous and derivable
functions with arbitrary small error, provided that a suffi-
cient number of hidden units are available.

Note that, depending on the class of values produced
by the network output units, discrete or continuous, the
model can deal, respectively, with classification or regres-
sion tasks. Given a loss or error function which is differ-
entiable with respect to the weights learning can be based
on the minimization of the error function via gradient de-
scent techniques. For multi-layer neural networks, an ef-
ficient implementation of gradient descent is obtained by
back-propagation [35], the most popular among the super-
vised training algorithms for this class of networks, where
the values of the errors are back propagated from the out-
put neural units to the input units, changing the weights
proportionally to the influence they had on the total error
Remp, 1. at each iteration the weight values w;; are up-

dated according to the learning rule w;; = wi; + Awyy,
ORemp

where Aw;; = —n e and n > 0 is the gradient de-
scent step size, or learning rate.

Despite of its implementation simplicity and usefulness,
back-propagation has the classical disadvantages of any
gradient descent method (local minima, dependency of the
final hypothesis on the initial weights condition, choice of
the “right” value for the gradient descent step, etc.). An-
other problem with learning is how to chose the “right”
topology of the network. The problem of optimizing the
architecture has been addressed by different approaches,
such as the use of constructive learning algorithms, which
grow the network topology during training, or pruning
techniques (see e.g., [34]), which after training try to prune
“useless” units or connections. Various techniques (such
as the Cascade Correlation algorithm [7]) have been pro-
posed to dynamically modify the network topology and its
dimension as part of the learning algorithm. Constructive
methods, also called growing methods, permit to start with
a minimal network configuration and to add units and con-
nections progressively, allowing automatic adaptation of
the architecture to the computational task. Bayesian learn-
ing has also been defined for neural networks where the
output is interpreted as a probability distribution [28].

Another relevant class of neural networks for supervised
learning, i.e. radial basin function (RBF) neural networks
[31], is defined by considering units with Gaussian activa-

74

tion functions. The use of stochastic activation functions
has also been studied, leading to models such as Boltz-
mann machines [1].

In the context of unsupervised learning, winner-take-all
networks are the most typical. These models are based
on units k — WT A, (21, ..., z,) that compute a mapping
k—WTA, : R™ — {0,1}", where the ith output re-
turns 1 iff the number of input values greater than z; is
at most kK — 1. The most used unit is the one defined for
k = 1, where the output of the unit indicates which of the
n inputs has maximal value. Very popular models in this
family are Self-Organizing Maps (SOMs) [21] and Adap-
tive Resonance Thory (ART) (e.g., [4]).

The aim of a SOM map M is to represent high-
dimensional input patterns with prototype vectors w
(weights of neurons) which can be visualized in a low di-
mensional lattice structure. The lattice structure defines
the network topology, specifying for each neuron a set of
neighbor neurons. The weights of the neurons are ran-
domly initialized. Then, when an input vector is presented
to the map M, the neuron whose weight vector with the
smallest Euclidean distance from the input vector (i.e. the
winning neuron) is selected, together with the neurons in
its neighbor, for training according to a Hebbian-based
learning rule. The strength of learning is regulated by a
function that both decreases with the distance (over the
lattice topology) of a neuron from the winning neuron, and
with the number of training iterations. In this way, the hope
is to capture in the map the main topographic relationships
among input patterns. In fact, SOMs are (basically) able to
perform input space density approximation, independently
of the order of presentation of the input patterns, even if
they may over-represent areas of low pattern density and
under-represent areas of high pattern density.

Adaptive Resonance Theory is a theory from which a
family of networks able to learn arbitrary input patterns
in a stable, fast, and self-organizing fashion has been de-
rived. The basic architecture is constituted by two layers
of neurons linked by inter-layers connections. The bottom
layer receives the input patterns and activates prototypi-
cal winners-take-all neurons in the top layer. The win-
ning neuron projects an expectation pattern back to the
bottom layer so to compare it with the input pattern. A
third component controls the mismatch between the input
pattern and the expectation pattern, and if this is above a
given threshold (vigilance), a new prototype (i.e., cluster)
is generated into the top layer, and the input assigned to
it. Both networks for dealing with discrete and continu-
ous variables have been developed, as well as supervised
versions, where an ART module representing the output
patters is added and correlated with the original ART mod-
ule.

Among the many other models, both deterministic and
stochastic, that have been developed in the connection-
ist area (see e.g. [16]), it is worth to mention networks
of spiking neurons (also called artificial pulsed neural

Anno I, N° 1/2, Marzo-Giugno 2006

CONTRIBUTI SCIENTIFICI

networks)[27], which are supposed to be more biologi-
cally plausible. In these networks, computational states are
encoded as temporal differences between spikes, or ring
times of neurons.

2.4 Probabilistic Graphical Models

The interest in belief networks (a.k.a. graphical models)
lies at the intersection between several research areas in-
cluding at least reasoning and uncertain knowledge repre-
sentation, statistics, and machine learning [29, 20]. In their
simplest formulation, these models are graphs with ver-
tices that consist of random variables taking on values in a
given propositional domain. Missing edges encode proba-
bilistic independence relations among these variables. For
example, in Markov networks, two variables A and B are
independent if no path links vertices A and B, and they
are conditionally independent given C' if all paths link-
ing A and B are intercepted by C. Bayesian network are
a directed form of belief networks that allow to naturally
model causation by linking causes to their effects by means
of directed arcs.

Learning in graphical models usually takes two impor-
tant and different forms. In parameter (or quantitative)
learning, the edge set of the network is given and the prob-
lem is to estimate the parameters that characterize the dis-
tribution defined by the network. This is usually achieved
by means of either maximum-likelihood or Bayesian statis-
tics approaches, maybe using an expectation-maximization
algorithm or gradient descent [3] in the presence of hidden
or missing variables. In structure (or qualitative) learning,
the aim is to search the graph space for an edge set that en-
code independence relations compatible with the observed
data. For example, structure learning in Bayesian networks
could be used to learn cause-effect relations [17].

Several popular models used in machine learning are
special cases of probabilistic graphical models. We briefly
mention some interesting cases in the following.

2.4.1 Naive Bayes

The Naive Bayes classifier can be seen as the simplest
model for the class conditional densities. For simplicity, let
us assume that the instance space is a set of tuples and de-
note an instance by = = (z!,. .., 2™). For each class y the
model prescribes that attributes are conditionally indepen-
dent given the class: p(z|y) = [];_, p(27|y). Classifica-
tion is obtained by straightforward application of the Bayes
rule p(y|z) o p(y)p(x|y) where p(y) is estimated e.g. by
class relative frequencies. In many cases the conditional
independence assumption of Naive Bayes will be violated,
leading to a poor modeling of p(z|y). The problem can
be mitigated by adding dependencies between attributes in
the form of additional edges in the Bayesian network rep-
resentation. However, it is important to remark that using
inaccurate class conditional densities does not necessarily
lead to classification errors. In practice, Naive Bayes is

Anno I, N° 1/2, Marzo-Giugno 2006

known to work well for small data sets but since it does
not converge to the optimal Bayes classifier, other discrim-
inant methods (such as logistic regression or SVM) may be
preferable when enough training examples are available.

2.4.2 Hidden Markov Models

Hidden Markov models (HMM) were originally intro-
duced by researchers working in speech recognition and
signal processing [32]. An HMM is a generative model of
sequences based on the underlying assumption that tem-
poral context is summarized into a finite set of states that
are not observed in the data (hence hidden). States evolve
in time based on transition probabilities. In this sense the
model can be seen as a kind of probabilistic finite state au-
tomaton and in facts an HMM can also be interpreted as a
description of a probabilistic regular grammar. Sequence
elements are generated at each time position according to
a probability distribution conditioned on the state. The
model is Markovian because of its fundamental conditional
independence assumption that future is conditionally in-
dependent of the past given the present. HMM are usu-
ally trained by variants of the Expectation-Maximization
algorithm for maximum likelihood estimation of parame-
ters with incomplete data (where incompleteness here is
due to hidden states). Although EM and conditional in-
dependence are two central notions also for probabilistic
graphical model, the fact that HMMs are a special case of
belief network was not recognized until it was presented in
a number of papers in the early 1990’s (see e.g. [8, 39]).
Besides speech recognition, HMMs have gained popular-
ity in many application domains, like modeling biological
sequences and natural language.

2.5 Statistical Relational Learning

Research in machine learning has historically evolved by
following in parallel several mainstream approaches. In
particular, the statistical, probabilistic and connectionist
views of learning discussed so far have strong links to
statistics but less strong links to some of the other main-
stream views of learning that are based on symbolic repre-
sentations. These have been primarily discussed in [6] and
include rule learning, program induction, and relational
learning. Recently, these views have begun to converge, al-
though a full synthesis is challenging and likely to require
many additional years of research. Statistical relational
learning (sometimes also referred to by the even more am-
bitious term “probabilistic logic learning”) is about ma-
chine learning exploiting at the same time rich data rep-
resentations (e.g. logical and relational) and probability
theory. In this context, a wealth of formalisms have been
introduced, including probabilistic relational models (a re-
lational extension of Bayesian networks), stochastic logic
programs, logical Markov networks and Bayesian logic
programs (see e.g. [12]). All these models aim at lifting the
expressive power of belief networks that are propositional

73

CONTRIBUTI SCIENTIFICI

in their original formulations. Probabilistic modeling, (es-
pecially when endowed with first-order logical expressive-
ness) is also appealing to solve one of the most crucial
limitations of present supervised learning algorithms, i.e.
the assumption that examples are independently sampled.
Probabilistic inference, in facts, allows us to propagate ev-
idence among different examples thus modeling various
form of linkage that occur in most data sets and naturally
achieve collective classification. Quoting a suggestive sen-
tence of T. Dietterich at a recent Dagstuhl seminar, “i.i.d.
in machine learning is dead, it’s time to relationalize our
data.”

2.6 Dealing with Structured Domains

There are many interesting application tasks in Bioinfor-
matics, Chemistry, and Natural Language Processing, just
to name a few, where data can naturally be represented
in a structured form such as sequences, trees, or graphs.
Although good results have been obtained by the applica-
tion of statistical learning techniques to “flat” representa-
tions of these structured objects, i.e. vectors of real num-
bers representing structural features extracted by a pre-
processing stage, both computational and generalization
concerns have motivated some researchers to develop new
techniques to directly deal with structured information.
From a computational point of view, representing a
structured object by a flat representation poses the dilemma
between preserving universality of representation, which
implies high space/time complexity and almost sure over-
fitting during training, and dropping structural details in
the representations, with the potential risk, if there is lack
of solid a priori knowledge, to incur in severe underfit-
ting through loss of information. When there is no a priori
knowledge, however, an approach which tries to preserve
in a natural way as much structural information as possible
in the representations , and develops suitable efficient pro-
cedures to process these representations, seems to be more
sensible. Two different but highly interrelated streams of
research follow this philosophy: Recurrent/Recursive Neu-
ral Networks (see for example, [22, 40, 9]) and Kernels for
Structures (see [11] for a short survey).
Recurrent/Recursive Neural Networks are based on the
following strategy: temporal/structural relationships are
represented explicitly and concisely according to the cur-
rent input structure, although with some limitations in the
case of structural data (e.g. cyclic graphs); then an inter-
nal task-dependent and task-efficient representation is de-
veloped via learning, and concurrently used, in supervised
learning, to learn the classifier/regressor of interest. This
is obtained by jointly training an encoding function for
the structural data, and an output function for classifica-
tion and/or regression. The problem of variance in size of
input structures is solved by weights sharing. Very inter-
esting results from the computational point of view have
already emerged for this approach, both concerning super-

76

vised and unsupervised learning (e.g. [13, 14]). There
is still the need, however, to develop learning procedures
which guarantee, at least in probability, the generalization
error to be below a specified threshold.

Kernels for Structures, on the other hand, try to exploit
the variety and success of kernel methods such as SVMs
and use the kernel trick to avoid an explicit representa-
tion of the structural features into a vectorial form: since
only comparisons among structures is actually required,
string/structure matching procedures are directly defined in
the structured input domain, without explicitly construct-
ing the (often large) vectorial feature space. A difficulty
of this approach is the a priori definition of the kernel so
to fit the application domain: for many domains a struc-
tured kernel cannot preserve all structural information un-
less solving NP-hard problems (see [33]). There have been
several approaches which address the problem of design-
ing domain-specific structure kernels. Fisher kernels de-
veloped by [18] use the Fisher-score vectors of Markov-
model parameters as their feature space. Convolution ker-
nels for discrete structures were introduced in [15], where
kernels are based in turn on smaller kernels which com-
pare specific structure parts. At the same time, Watkins
[44] independently proposed a kernel for strings based on
comparing all (possibly non-contiguous) k-length subse-
quences for two input strings. The connection between
Fisher kernels and other discrete kernels was highlighted
by Saunders et. al [37], where it was shown that string-
type kernels have a probabilistic interpretation and equiv-
alent Fisher kernels for the resulting HMMs can be de-
fined. There now exist several general frameworks for
building kernels for discrete structures, most notably ratio-
nal kernels [5] and probability product kernels [19]. Per-
haps the most successful applications of structure kernels
has been in the field of bioinformatics, where several struc-
ture kernels such as profile kernels [24], mismatch kernels
[25] and local-alignment kernels [36] have been shown
to achieve state-of-the-art performance on tasks such as
protein-homology detection.

Kernel-based approaches for other types of structures
(rather than individually structured training examples)
have also been developed. These include diffusion kernels
[23], for when the training examples themselves form part
of a structure (e.g. web pages are often related by an ontol-
ogy). Recently, proposals on generating structured outputs
rather than a single label have also been presented and have
received a great deal of interest (e.g. [2, 42, 41]).

3 Relationships to Other Areas

Although strictly speaking Machine Learning is a subset of
Artificial Intelligence and Statistical Learning a subset of
Machine Learning, there are several other areas of Artifi-
cial Intelligence in which statistical and probabilistic data
driven algorithms have been investigated. In these cases,
research mainly aims at solving specific problems where

Anno I, N° 1/2, Marzo-Giugno 2006

CONTRIBUTI SCIENTIFICI

statistical learning tools have rapidly been included among
the preferred methods of choice.

One of these areas is Natural Language Processing (see
[26]). A common characteristic of many NLP problems
is the relational and structured nature of the representa-
tions that describe data and that are internally used by var-
ious algorithms, offering interesting applications for the
structured learning methods outlined in Section 2.6. Tasks
are numerous and diverse and include for example refine-
ment of statistical parsers, tagging named entities, syntac-
tic chunking, extraction of relations between entities.

A second important areas that has strong intersections
with statistical and probabilistic learning is machine per-
ception. We mentioned that Hidden Markov models were
introduced in the 1970’s within the speech recognition
community. More in general, speech and vision have origi-
nated a large number of important pattern recognition tasks
for which statistical learning is clearly a natural solution.

Machine learning methods have been applied for many
years to several important problems related to molecular
biology and chemistry and very often provide state-of-the-
art solutions to prediction problems in these disciplines.

Since the beginning of the genomics era and the in-
troduction of high-throughput technologies, biology has
evolved into a massively data oriented discipline. Machine
learning is well suited here because of the noisy nature of
the domain and the intrinsic difficulty in devising models
that are accurate and computationally tractable. Examples
of prediction tasks that are more or less routinely solved
with various machine learning algorithms (especially neu-
ral networks and kernel machines) include protein struc-
ture, protein function, gene expression analysis and infer-
ence of gene networks.

Machine learning research is also active in developing
methods for Chemoinformatics, in particular for predicting
the biological activity of small molecules. Early methods
developed since the 1960’s in the QSAR community are
based on linear regression applied to numerical descriptors
of molecules, obtained from physico-chemical properties,
from topological information (regarding the molecule as a
graph), and from 3D atom coordinates. Recent research
has shown that several families of graph kernels can be
successfully applied to large-scale screening tasks (e.g. the
small molecule data sets made available by the National
Cancer Institute).

REFERENCES

[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A
learning algorithm for boltzmann machines. Cogni-
tive Science, 9(1):147-169, 1985.

[2] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden
markov support vector machines. In ICML 03, pages
3-10, 2003.

Anno I, N° 1/2, Marzo-Giugno 2006

[3] J.L.A. Binder, D.L.A. Koller, S.L.A. Russell, and
K.L.A. Kanazawa. Adaptive Probabilistic Net-
works with Hidden Variables. Machine Learning,
29(2):213-244, 1997.

[4] G. A. Carpenter and S. Grossberg. A massively par-
allel architecture for a self-organizing neural pattern
recognition machine. Computer Vision, Graphics,
and Image Processing, 37:54-115, 1987.

[5] C. Cortes, P. Haffner, and M. Mohri. Rational ker-
nels. In S. Becker, S. Thrun, and A. Obermayer, edi-

tors, Advances in Neural Information Processing Sys-
tems 15, 2003.

[6] F. Esposito, A. Giordana and L. Saitta. Machine
Learning and Data Mining. [Intelligenza Arti ciale,
3(1) (this issue).

[7]1 S. E. Fahlman and C. Lebiere. @ The cascade-
correlation learning architecture. In D.S. Touretzky,
editor, Advances in Neural Information Processing
Systems 2, pages 524-532. San Mateo, CA: Morgan
Kaufmann, 1990.

[8] P. Frasconi and Y. Bengio. An EM approach to gram-
matical inference. In Proc. 12th International Con-
ference on Pattern Recognition (ICPR 94), volume 2,
pages 289-294, 1994.

[9] P. Frasconi, M. Gori, and A. Sperduti. A general
framework for adaptive processing of data structures.
IEEE Transactions on Neural Networks, 9(5):768—
786, 1998.

[10] Y. Freund and R.E. Schapire. Large margin classifica-
tion using the perceptron algorithm. Machine Learn-
ing, 37(3):277-296, 1999.

[11] T. Gartner. A survay of kernels for structured data.
ACM SIGKDD Explorations Newsletter, 5(1):49-58,
2003.

[12] L. Getoor and B. Taskar, editors. An Introduction
to Statistical Relational Learning. MIT Press, Cam-
bridge, MA, 2006.

[13] B. Hammer. Learning with Recurrent Neural Net-
works, volume 254 of Springer Lecture Notes in
Control and Information Sciences. Springer-Verlag,
2000.

[14] B. Hammer, A. Micheli, A. Sperduti, and M. Strick-
ert. Recursive self-organizing network models. Neu-
ral Networks, 17(8-9):1061-1085, 2004.

[15] D. Haussler. Convolution kernels on discrete struc-
tures. Technical Report UCSC-CRL-99-10, Univer-
sity of California, Santa Cruz, July 1999.

[16] S.Haykin. Neural Networks, A Comprehensive Foun-
dation. Prentice Hall, 2nd edition, 1999.

7

CONTRIBUTI SCIENTIFICI

[17] D. Heckerman, D. Geiger, and D. M. Chickering.
Learning bayesian networks: The combination of
knowledge and statistical data. Machine Learning,
20:197-243, 1995.

[18] T. Jaakkola, M. Diekhans, and D. Haussler. A
discriminative framework for detecting remote pro-

tein homologies. Journal of Computational Biology,
7(1,2):95-114, 2000.

[19] T. Jebara, R. Kondor, and A. Howard. Probability
product kernels. Journal of Machine Learning Re-
search, 5:819-844, 2004.

[20] ML.L. Jordan. Learning in graphical models. MIT
Press Cambridge, MA, USA, 1999.

[21] T. Kohonen. Self-Organizing Maps, volume 30 of
Springer Series in Information Sciences. Springer,
Berlin, Heidelberg, 1995.

[22] J.F. Kolen and S.C. Kremer, editors. A Field Guide
to Dynamical Recurrent Networks. 1EEE Press, Inc.,
New York, 2001.

[23] R. Kondor and J. Lafferty. Diffusion kernels on
graphs and other discrete input spaces. 2002.

[24] R. Kuang, E. Te, K. Wang, K. Wang, M. Siddiqi, Y.
Freund, and C.S. Leslie. Profile-based string kernels
for remote homology detection and motif extraction.
In 3rd International IEEE Computer Society Com-
putational Systems Bioinformatics Conference (CSB
2004), pages 152-160, 2004.

[25] C. Leslie, E. Eskin, A. Cohen, J. Weston, and
W. Stafford Noble. Mismatch string kernels for dis-
criminative protein classification. Bioinformatics,
20(4):467-76, 2004.

[26] L. Lesmo and M.T. Pazienza. Natural Language Pro-
cessing. Intelligenza Arti ciale, 3(1) (this issue).

[27] W. Maass and C.M. Bishop. Pulsed neural networks.
MIT Press, 1998.

[28] D.J.C. MacKay. Bayesian interpolation. Neural

Comput., 4(3):415-447,1992.

[29] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems : Networks of Plausible Inference. Morgan
Kaufmann, 1988.

[30] T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi.
General conditions for predictivity in learning theory.
Nature, 428(6981):419-422, Mar 2004.

[31] M.J.D. Powell. Radial basis functions for multivari-
able interpolation: A review. In J. C. Mason and
M. G.Cox, editors, Proceedings of the IMA Confer-
ence on Algorithms for the Approximation of Func-
tions and Data, pages 143—167. Oxford Science Pub-
lications, 1985.

78

[32] L.R. Rabiner. A tutorial on hidden Markov models
and selected applications in speech recognition. Pro-
ceedings of the IEEE, 77(2):257-286, 1989.

[33] J. Ramon and T. Girtner. Expressivity ver-
sus efficiency of graph kernels. pages 65-74.
ECML/PKDD’03 workshop proceedings, September
2003.

[34] R. Reed. Pruning algorithms-a survey. IEEE Trans-
actions on Neural Networks, 4(5):740-747, 1993.

[35] D.E. Rumelhart, G.E. Hinton, and R.J. Williams.
Learning internal representations by error propaga-
tion. In D.E. Rumelhart, J.L. McClelland, and the
PDP Research Group, editors, Parallel Distributed
Processing: Explorations in the Microstructure of
Cognition. Vol. 1: Foundations. MIT Press, 1986.

[36] H. Saigo, J.P. Vert, T. Akutsu, and N. Ueda. Protein
homology detection using string alignment kernels.
Bioinformatics, 20:1682—-1689, 2004.

[37] C. Saunders, J. Shawe-Taylor, and A. Vinokourov.
String Kernels, Fisher Kernels and Finite State Au-
tomata. In S. Becker, S. Thrun, and A. Obermayer,
editors, Advances in Neural Information Processing
Systems 15,2003.

[38] J. Shawe-Taylor and N. Cristianini. Kernel Methods
for Pattern Analysis. Cambridge University Press,
2004.

[39] P. Smyth, D. Heckerman, and M.I. Jordan. Proba-
bilistic Independence Networks for Hidden Markov
Probability Models. Neural Computation, 9:227—
269.

[40] A. Sperduti and A. Starita. Supervised neural net-
works for the classification of structures. IEEE Trans-
actions on Neural Networks, 8(3):714-735, 1997.

[41] B. Taskar, C. Guestrin, and D. Koller. Max-margin
markov networks. In Neural Information Processing
Systems, 2003.

[42] 1. Tsochantaridis, T. Hofmann, T. Joachims, and
Y. Altun. Support vector machine learning for inter-
dependent and structured output spaces. In Carla E.
Brodley, editor, ICML 04: Twenty- rst international
conference on Machine learning, New York, NY,
USA, 2004. ACM Press.

[43] V.N. Vapnik. Statistical Learning Theory. Wiley,
New York, 1998.

[44] C. Watkins. Dynamic alignment kernels. Technical
Report CSD-TR-98-11, Royal Holloway, University
of London, January 1999.

Anno I, N° 1/2, Marzo-Giugno 2006

