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1 Introduction

Logical languages were developed for humans, with
the main objective of stating what is a correct ar-
gument. Artificial Intelligence (AI) provided a new
motivation and application domain for logicians.

The main demand of AI to logics is to provide a for-
mal language, a semantics, and a set of proof proce-
dures that allow us to represent the various aspects of
knowledge, and to reason about it. AI artifacts, such
as robots, agents, “intelligent” programs, etc. act in a
(sometimes virtual) world, and take decisions on the
basis of what they “know” about this world. Here the
need arises to be able to represent and use knowledge.
Hence, speaking of Logics for AI largely means speak-
ing of “Knowledge Representation and Reasoning.”

Speaking of Logics for AI, one cannot avoid recalling
the seminal work of John McCarthy. In particular, in
the paper “Generality in Artificial Intelligence” [22],
he explains the need of using logic to represent knowl-
edge in a computer as a way to write general programs,
i.e., programs which are able to work and adapt in a
large number of situations.

. . . The 1958 idea for increasing generality [of
programs] was to use logic to express facts in
a way independent of the way the facts might
subsequently be used. It seemed then and still
seems that humans communicate mainly in
declarative sentences rather than in program-
ming languages for good objective reasons
that will apply whether the communicator is
a human, a creature from Alpha Centauri or
a computer program. Moreover, the advan-
tages of declarative information also apply
to internal representation. The advantage of
declarative information is one of generality.
The fact that when two objects collide they
make a noise may be used in particular situa-
tions to make a noise, to avoid making noise,
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Figure 1: The structure of a logic-based system

to explain a noise or to explain the absence
of noise. [22]

So, the focus moved from “describing human knowl-
edge (truth) on paper” to “realizing useful knowledge
in a computer.”

Why a logic language? It is declarative, it has a for-
mal semantics, it is endowed with a reasoning appara-
tus, it is high level (i.e., independent of machine im-
plementations), and it is understandable by humans.
The structure of a logic-based system for represent-
ing and reasoning about knowledge is summarized in
the picture in Figure 1 where, using the now stan-
dard nomenclature introduced by Hector Levesque in
[20], “Tell” incorporates the new knowledge encoded
in a statement, and “Ask” allows us to query what is
known. Indeed, we expect that the “Answer” gener-
ated as response to an “Ask” follows from the state
of the knowledge base as resulting from all the “Tell”
actions.

Considering the figure, our knowledge base consists of
a finite collection of formulas in a logical language.
The main task of the knowledge base is to answer
queries which are submitted to it, and to be able to
incorporate new knowledge.

The following three sections are respectively de-
voted to the three aspects depicted in the figure, i.e.,
how knowledge can be represented in logic, how it is
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possible to answer queries, and how it is possible to in-
corporate new knowledge, possibly contradicting the
existing one. Of course, it is not possible to accu-
rately describe more than 50 years of research in logic
and in logic in AI in a few pages. Our goal is thus
to provide an introduction to the key issues arising
when constructing a logic-based system, pointing to
other articles of this collection and to the literature
for details and applications.

For a somehow different treatment of the subject
see [28], or the more classical books [19, 8, 18].

2 Logic-based Knowledge Bases

Logic has been invented with the main intent to for-
malize knowledge and correct reasoning, and has been
widely used for this task, even if sometimes in an
implicit way. For instance, standard relational data
bases are based on logic [25], and many other com-
plex structures such as frames [24] can be considered
as syntactic variants of parts of first order logic [17].

It does not come with surprise that logic played a
major role for formalizing knowledge in AI since the
beginning. Indeed, researches in AI first adopted the
existing logics developed by mathematicians, logicians
and philosophers, such as classical (propositional and
first order) logic, and modal logic to represent and
reason about knowledge. However, the need to repre-
sent and efficiently reason about the many aspects of
the world caused the birth of new logics. For instance,
Horn clause logics, which gave rise to Prolog and Logic
Programming (see the article on Automated Reason-
ing in this collection), or description logics (see the
article on Ontologies and Description Logics in this
collection), which are at the basis of current systems
for representing ontologies and taxonomic knowledge.
Similarly, the need to formalize actions and their ef-
fects on the state of the world stimulated the develop-
ment of two main families of logics, action languages
[10, 11] and the Situation Calculus [23, 27]. Action
logics can also be seen as spatial and temporal logics
(see, e.g., [1] and [9]), i.e., as logics formalizing the
two dimensions -space and time- in which every entity
(be it artificial or not) lives and moves. In addition,
in order to take into account the fact that sometimes
sentences in the real world are not sharply true or
false, many valued logics [15] have been introduced,
and also fuzzy logics (see the seminal paper [30] and
the more recent [16]), which allow sentences to assume
a truth value that goes from 0 (false) to 1 (true) in a
continuum.

As the above few examples make clear, a wide range
of logics have been developed. Grouping them on the
basis of the specific aspect of the knowledge they are
meant to represent would end up in a quite long list.
Further, it would not provide a taxonomy of the exist-

ing logics, since many of them have been developed to
formalize more than one aspect, e.g., both space and
time.

It makes more sense to classify existing logics ac-
cording to the features of the language being used.
This is the guideline for the rest of the section.

Classical logics Classical logics comprehend propo-
sitional, first order, second order and - more generally
- higher order logics. Going up in the hierarchy the ex-
pressive power increases. Propositional languages are
the simplest ones; they are based on a set of atomic
statements, which are meant to represent propositions,
namely facts that can be true/false in a given world.

Atomic sentences can be composed via truth func-
tional connectives, such as conjunction, disjunction,
negation, implication etc, to form complex statements.

The main limitation in the expressiveness of the
propositional language is its lack of generality. For
example, in order to express a general fact such as -
for instance - “every block is on the table,” one has to
state this property for each single block in the world.

Predicate logics overcome the limitations of propo-
sitional languages by allowing a better granularity in
the construction of atomic statements. Namely, the
language is extended in order to include terms, where
a term denotes an object in the world, and relational
symbols of arity n (n ≥ 0), representing a relation
between n objects. Within predicate languages it is
possible to construct an atomic statement by applying
a relational symbol of arity n to a n-tuple of terms,
and a propositional atomic statement corresponds to
a relational symbol of arity 0. Further, in the first
order case, the language allows for variables ranging
over objects. Existential (resp. universal) quantifica-
tion over the variable x is denoted with ∃x (resp. ∀x)
and allows us to represent statement like “there ex-
ists an object x such that. . . ” and “for each object x
. . . .” In second order languages, variables can range
over sets of tuples of objects (i.e., relations) and this
indeed gives more expressive power. Among the sec-
ond order logics, a special role is played by Quantified
Boolean Logic (QBL). Technically speaking, QBL is
a second order logic, but all the predicates and vari-
ables ranging over relations have arity 0: essentially, it
is propositional logic enhanced with quantifiers having
variables ranging over the truth values true and false.
Classical QBL is not more expressive than classical
propositional logic, but it is exponentially more suc-
cinct [3].

Modal logics The use of classical logic to represent
knowledge is based on the underlying hypothesis that
there is one unique world (or state of affairs) in which
propositions can take some truth value. On the other
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hand, it is often the case that our knowledge is about
other “possible worlds.”

More formally, in classical logic the truth value of
a complex formula depends on the truth of its com-
ponents in the actual (unique) world. For instance,
the truth value of A → B is a function of the truth
value of A and that of B. There are cases, however,
in which it is necessary to express knowledge on a for-
mula without explicitly referring to its truth values
in the actual/current world. For instance, the truth
of the formula expressed by the natural language sen-
tence

‘If John inserts 1 cent in the slot machine
then it’s possible that John wins 10000$’

(1)

in the current situation is completely independent
of the truth of the formulas expressed by the sub-
sentences (1.1) ‘John inserts 1 cents in the slot ma-
chine’ and (1.2) ‘John wins 10000$’. Conversely, the
truth of (1) depends on the truth of (1.1) and (1.2) in
all the possible situations which are reachable from a
situation in which John inserts 1 cent in the slot ma-
chine. Thus, a sentence like (1) cannot be expressed
following the principles outlined for classical logic. In-
stead, it is possible to introduce additional symbols,
called modalities, which, applied to a proposition φ,
express the fact that the truth value of the resulting
proposition depends (also) on the values of φ in a set
of worlds considered reachable from the current one.
Typical examples of modalities which have been in-
troduced in philosophy, mathematics and AI are those
representing knowledge, belief, desire, and intention,
to cite just a few. Indeed AI fostered the development
of a very large number of modal languages, each dif-
fering from the other for the properties of the modal-
ities used. In Table 1 we summarize the most impor-
tant modal logics, showing an example of the formulas
with the corresponding intuitive meaning. The rela-
tive facility with which these modalities can be intro-
duced and semantically defined makes modal logics
suited for the formalization of many knowledge rep-
resentation tasks, such as knowledge and time (see,
e.g., [7, 6, 14]). The semantics of a modal logic is usu-
ally given in terms of a Kripke structure, defined as
a triple 〈W,R, S〉 where W is a set (called the set of
worlds), R ⊆ W ×W defines the accessibility relation
among worlds (intuitively, 〈w1, w2〉 ∈ R means that
the truth of modal sentences in w1 depends on what
is true in w2), and S specifies which atomic proposi-
tion is true in each world w ∈ W .

Meta logics An alternative approach to solve the
problem of expressing properties of formulas which
are not functionally definable from their truth value,

Alethic modalities
�φ φ is necessarily true
♦φ φ is possibly true (equivalent to ¬�¬φ,

i.e., φ is not necessarily false)

Epistemic modalities
Kaφ Agent a knows that φ is true
Baφ Agent a believes that φ is true

Linear Temporal modalities
Xφ φ will be true at the next state

of the world
Gφ φ will be always true
Fφ φ will be eventually true

(equivalent to ¬G¬φ,
i.e., φ will not be always false)

φUψ φ is true until ψ eventually becomes true

Dynamic modalities
[α] φ after executing the program α,

φ must be true
〈α〉φ after executing the program α,

φ may be true
[α + β] φ after the execution of either α or β,

φ is must be true
[α;β] φ after the execution of α followed by β,

φ is must be true
[α∗] φ after n executions of α, φ must be true
[ψ?] φ after testing if ψ is true, φ must be true

BDI-agents modalities
Baφ agent a believes that φ is true
Daφ a desires (has the goal) to achieve φ
Iaφ a has the current intention to achieve

the goal φ

Deontic modalities
OBφ it is obligatory that φ
PEφ it is permissible that φ (equivalent to

¬OB¬φ, i.e., it is not obligatory that not φ)
IMφ it is impermissible that φ (equivalent to

OB¬φ, i.e., it is obligatory that not φ)
GRφ it is gratuitous that φ (equivalent to

¬OBφ, i.e., it is not obligatory that φ)
OPφ it is optional that φ (equivalent to

¬OBφ ∧ ¬OB¬φ, i.e., neither
φ nor ¬φ are obligatory)

Spatial/topological modalities
�φ φ is true in all the neighboring points
♦φ φ is true in at least one neighboring

point, (equivalent to ¬�¬φ, i.e., φ is not
false in all the neighboring points)

Table 1: Modalities and their intuitive meaning
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is obtained by allowing the language to speak about
the sentences themselves. This idea was extensively
used by logicians like Tarski, Gödel, etc., with the
main objective of providing a formal definition of when
a statement is true. Their original idea was to ex-
tend a first order language with terms which are in-
tended to denote formulas. For instance, the constant

Maria is married to Giuseppe� is intended to denote
the atomic statement Maria is married to Giuseppe, of
which it is a reification. Reification is similar to the
use of quotation in speech reports in natural language;
it allows us to speak about the reified formula, and the
resulting language is a standard predicative one.

Arguably, the most famous language with reifica-
tion is the Situation Calculus (first introduced by John
McCarthy in the sixties [21, 23], and then further de-
veloped after the rejuvenating work by Ray Reiter in
the early nineties [26, 27]). Intuitively speaking, a sit-
uation corresponds to a snapshot of the world at some
instant and can be represented via a term of sort situ-
ation. Thus, the language of the Situation Calculus is
a predicate language which allows us to express prop-
erties of the states of the world.

In the Situation Calculus, reified statements are
used to describe the states of the world and the ef-
fects of actions in a given state. However, the use
of reification is not limited to this. From a logical
point of view, reification allows one language to speak
about another language. A language which is capable
to describe another language is called meta language
or meta (level) language, while the described language
is called object language. Analogously, it is common
to speak about meta knowledge and object knowledge
in order to distinguish between facts expressed in the
meta and object languages, respectively. Possibly, one
of the first and most prominent proposals allowing for
both meta and object level languages (separated from
one another) is by Richard Weyhrauch [29], and was
implemented in LISP in the FOL system. Since then
there have been many uses of meta and object lan-
guages, see, e.g., [4], and [5] for a recent survey of the
use of metalogic in knowledge representation.

Contextual logics All the previous approaches,
with the exception of the works dealing with a meta-
level theory distinct from an object-level theory, as-
sume that the world is formalized in a unique logical
system, i.e., in a unique logic. Contextual logics do
not have this assumption. Any given world, problem,
etc. is formalized via a set of theories, each with its
own language, and meant to capture an aspect/piece
of the whole scenario. The different theories (called
contexts) communicate via a proper set of rules allow-
ing us to derive one fact in one context on the basis
of what has been derived in other contexts.

The study of a formal notion of context has a long

history in various areas of AI. Again, the first refer-
ence can be traced back to Richard Weyhrauch and
his work on mechanizing logical theories in FOL [29].
However, it became a widely discussed issue only in
the late 1980s, when John McCarthy proposed the
formalization of context as a crucial step toward the
solution of the problem of generality [22], by claim-
ing that no formal theory of common sense can get by
without some formalization of context, as the repre-
sentation of any piece of knowledge seems to crucially
depend on the context in which it is asserted.

Along the same lines, though with a different em-
phasis, Fausto Giunchiglia [12] proposed the use of
contexts in order to solve the problem of locality,
namely the problem of modeling reasoning which uses
only a subset of what is known about the world. The
idea is that, while solving a problem, people do not use
all their knowledge, but construct a “context” and use
it as if it contained all relevant facts about the prob-
lem at hand. See [12, 13] for more details.

McCarthy and Giunchiglia provide different formal-
izations of contextual logics, while sharing the intu-
ition that reasoning happens in contexts, and it is
possible to switch from a context to another one, for
example when a context is not adequate to solve a
problem.

3 Querying a Knowledge Base

So far we described the most common logics used in
AI, highlighting their expressive power. This influ-
ences the type of knowledge that can be expressed,
hence represented, in a knowledge base. Referring
again to Figure 1, we want also our knowledge base to
be able to answer the queries submitted to it.

A knowledge base is a specification of a set of in-
terpretations, where an interpretation I is a mathe-
matical construction in which every formula φ in (the
language of) the knowledge base can be evaluated to
true or false. As a simple example, in classical propo-
sitional logic, an interpretation is a function mapping
each atom to true or false, and evaluating a proposi-
tion φ corresponds to computing the truth value of φ
according to the standard truth tables of the proposi-
tional connectives. In other logics, such as predicate
and modal logics, interpretations are “richer” mathe-
matical structures, hence evaluating the truth value of
formulas is more difficult. Independently of the logic,
an interpretation I is a model of a formula φ if the
value of φ in I is true. The notion of model extends
from a formula to a finite set of formulas, namely a
knowledge base Γ. Let us call MΓ the set of all models
of Γ.

The notion at the basis of many reasoning tasks is
that of logical consequence, which formalizes correct
reasoning with a knowledge base: a formula φ is a
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logical consequence of a set of formulas Γ (written as
Γ |= φ) if every model in MΓ is a model of φ. As a
special case we get the notion of validity when Γ is
empty (written as |= φ).

Note that, it is standard to assume that a model
of a set of formulas is a model of each formula in the
set. This inevitably leads to monotonic logics: If we
have two sets Γ and Γ′ of formulas, if Γ ⊆ Γ′ then
MΓ′ ⊆ MΓ and thus the set of logical consequences of
Γ is a subset of the set of logical consequences of Γ′. In
other words, adding a new piece of knowledge to the
base cannot reduce the number of its consequences. In
AI, it has been recognized that the logic behind many
reasoning tasks is intrinsically nonmonotonic, as the
logical consequences of a knowledge base can become
false when new knowledge is acquired.

The formalization of nonmonotonic logics and rea-
soning has a long tradition in AI, starting from the
famous Volume 13 of the “Artificial Intelligence Jour-
nal,” published in 1980, and very well described (to-
gether with other approaches to nonmonotonic rea-
soning) in [8].

No matter whether the logic is monotonic or not,
the question is how to effectively determine the facts
which are true in each model of the knowledge base.
The first observation is that we can expect this task
to be more or less difficult according to the expres-
siveness of the logic. In general, the more expressive
the logic, the more difficult it is to reason in it. For
instance, checking whether a formula φ is a logical
consequence of a finite set Γ of formulas is: (•) de-
cidable and co-NP complete in classical propositional
logic, (•) decidable and PSPACE complete for clas-
sical quantified boolean logic, (•) decidable but with
varying complexity depending on the set of operators
used for most propositional modal logics, (•) not de-
cidable in classical first order logic. For a more in
depth discussion of the various methods for checking
whether Γ |= φ in various logics, we refer to the ar-
ticle on Automated reasoning in this collection. Here
we briefly outline the methods based on deductive sys-
tems, and those based on specialized procedures.

Deductive systems The problem of defining the
notion of logical consequence is one of the first prob-
lems that one has to tackle in proposing a new logic.
As seen above, the standard way to define the notion
of logical consequence is to define the notions of inter-
pretation of the language and model of formulas.

The notion of logical consequences of a given set
of formulas is a “semantic” one; alternatively we may
proceed “syntactically” and introduce a notion of de-
duction or derivation. To this end, we provide a fi-
nite and possibly empty set of (schemas of) formulas,
called axioms, and a finite set of inference rules, which
allow us to infer/compute formulas, starting from the

axioms. Axioms and inference rules define a deductive
system.

For instance, the deductive system for the classi-
cal propositional logic proposed by Hilbert, consists
of three axiom schemas,

A → (B → A)
((A → (B → C)) → ((A → B) → (A → C))
(¬B → ¬A) → ((¬B → A) → B)

and one inference rule

A, A → B

B
Modus Ponens

Similarly, an axiomatization for the simple modal log-
ics of knowledge called K consists of the above axioms
and rules, extended with the axiom schema

�(A → B) → (�A → �B)

and the inference rule

A

�A
Necessitation

Axioms and inference rules are supposed to compute
consequences in the logic independently of the specific
content of the knowledge base. Given a knowledge
base consisting of a set Γ of formulas, a formula φ is a
consequence of Γ if there exists a deduction of φ from
Γ, i.e., a sequence of formulas ending with φ such that
each formula in the sequence is a formula in Γ, or is
an axiom, or else is obtained by previous formulas in
the sequence via the application of an inference rule.

In order for a deductive system to be of some inter-
est in inferring logical consequences, it is of paramount
importance that it is correct and complete, i.e., that
it only derives formulas that are logical consequences
of the initial set, and that all the logical consequences
have a derivation using the deductive system, respec-
tively.

Note that the above definition of derivation is again
monotonic: adding a new fact to Γ enlarges the set
of admissible deductions and thus the set of conse-
quences.

Automated decision procedures The fact that
the complexity of checking whether Γ |= φ is already
relatively high in classical propositional logic, fostered
the development of specialized procedures. The arti-
cle on Automated Reasoning in this collection is dedi-
cated to the state of the art in this area; here we only
provide a sketchy description.

Most proof procedures for automated reasoning re-
duce the problem of logical consequence to a satisfia-
bility test of a finite set of formulas Γ, denoted with
SAT(Γ). SAT(Γ) checks whether there is a model in
which all the formulas in Γ are true.
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These procedures can be used also to check if a for-
mula φ is a logical consequence of a finite set of basic
facts Γ. Indeed SAT(Γ ∪ {¬φ}) returns false if and
only if Γ |= φ

Several procedures for un-satisfiability testing are
available for various monotonic and nonmonotonic
logics; the interested reader is referred to the article
on Automated Reasoning.

4 Updating and Revising
a Knowledge Base

An information system characterizes a view of the
world with which it interacts; its input can take two
forms; a query or an impetus for change. Physically,
the information held by an information system might
be a diagram, a graph, a spreadsheet, a database, a
rulebase, or a more sophisticated formal entity. More
often than not, information is uncertain and subject to
change; this is the case even for simple database sys-
tems. Consequently, an information system requires
a mechanism for modifying its view as more informa-
tion about the world is acquired. The area of belief
revision focus on modeling the behavior of an infor-
mation system as it receives new information. In the
literature, the operation of “updating” is usually dis-
tinguished from that of “revising” a knowledge base,
though both operations are about inserting new infor-
mation into it and both assume that the result should
preserve as much information as possible.

Intuitively speaking, updating a knowledge base
amounts to changing the information in order to ac-
count for some information about a new state of af-
fairs. Revising a knowledge base amounts to changing
the information in order to account for more informa-
tion about the same state of affairs.

What makes belief revision non-trivial is that sev-
eral ways for performing this operation are possible.
For example, if the current knowledge includes the
three facts A, B and A ∧ B → C, the introduction
of the new information ¬C, requires a revision of the
knowledge base that can be done preserving consis-
tency only by removing at least one of the three facts.
In this case, there are at least three different ways for
performing the revision, each corresponding to remov-
ing one of the three initial facts.

In the literature, the properties which should be sat-
isfied by the operation of revision of a knowledge base
at the light of new information have been extensively
studied and discussed, starting from the seminal work
of Alchourrón, Gärdenfors, and Makinson [2] which
defined the postulates that should be satisfied by any
operation of revision of a knowledge base.

5 Relation with other research areas

Research in logic interacts with almost any other re-
search area in AI, and each of them provides an appli-
cation domain for logic. Here we just list some, from
the most prominent evergreen ones to the most fash-
ionable at present: Planning, Machine Learning, Diag-
nosis, Natural Language Processing, Description Log-
ics, Multiagent Systems, Question Answering, Expert
Systems, Text Understanding, Knowledge Extraction,
Semantic Integration, Knowledge Management. Some
of these areas have a dedicated article in this collection
and the interested reader is referred to them.

Research in logics for AI had also impact in areas
of Computer Science that traditionally are not consid-
ered as part of AI, among them: Formal verification
and specification of systems, Database and informa-
tion integration, Distributed knowledge management,
Semantic Web and Web Services.

Summing up, logic is for AI, and for Computer Sci-
ence, what calculus is for control theory: it is thus not
a surprise that it plays such an important role.
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