
35Anno III,  N° 1/2, Marzo-Giugno 2006

1 Introduction

The design of autonomous systems able to interact with
the environment to accomplish complex goals, such as in-
telligent agents, autonomous robots and unmanned vehi-
cles, requires to reason about how and when to act, and
about the effects of system actions in the world and along
the timeline. Automated Planning and Scheduling (P&S)
[26] is the area of ArtiÞcial Intelligence which concerns
models and techniques for synthesizing and maintaining
plans of actions, strategies of execution, and resource al-
location policies which allow us to realize complex tasks.
More precisely, planning is the process of synthesizing se-
quences of actions or activities which accomplish a desired
goal from an initial state, while scheduling focuses on the
process of allocating given activities and resources in time
while respecting various types of constraints such as ca-
pacity, precedence and duration.

Planning. Since its very Þrst origin with the classical work
of Fikes et al. [22], automated planning has been given
a formal logical characterization consisting in an agent-
centric point of view, where the agent executes actions
which modify the world allowing it to obtain a desired sit-
uation or goal. Nevertheless, the toy problems typical of
classical literature present challenges which are different
from those arising in more realistic application domains.
Real-sized planning domains are affected by combinato-
rial complexity of different nature (see [4, 21] and many
others for complexity results) and for this reason a large
part of early and current research efforts focus on search
control techniques. Some of the approaches use represen-
tations and techniques specially designed for general plan-
ning domains (e.g., state-space search, plan space search,
planning graph based search, heuristic search), while other
techniques are based on the reduction of planning to a
known problem, such as the Constraint Satisfaction Prob-
lem (CSP), model checking or propositional satisÞability
(SAT) to take advantage of specialized solvers for those
problems. Moreover, the requirement of relaxing various

limits and restrictions of the classical planning approach,
like atomicity of time and the closed world assumption, led
to investigate several approaches, such as models which al-
low us to specify constraints on time and metric quantities,
and models for planning under uncertainty. An inßuential
initiative for the area has been the international planning
competition (IPC) held every other year since 1998. The
competition has led to a signiÞcant improvement in the per-
formance of planners over the years, and has fostered the
development of problems with increasingly complex fea-
tures. Functional to the competition has been the develop-
ment of PDDL (Planning Domain DeÞnition Language), a
language for modeling planning domains.

Scheduling. The scheduling problem has been studied
extensively in Management Science, Operations Research
and AI. Early AI research focused on the representation of
ill-structured domain features which are difÞcult to capture
in terms of mathematical modeling, and on search con-
trol through reasoning on domain constraints, e.g., [23].
The collection [47] gives a quite exhaustive perspective on
scheduling research from the 80s and early 90s. Similarly
to most of AI of the early days, this work shows how sev-
eral scheduling systems have been successful and inßuen-
tial, e.g., ISIS, OPIS, etc., although the scientiÞc princi-
ples underlying that research were mostly hidden within
the complexity of the system architectures. AI research
on scheduling has signiÞcantly evolved over the last Þf-
teen years and the principles behind the early work have
emerged, the reproducibility of techniques has been as-
sessed, and a bulk of new results has allowed contributions
of AI studies in the multidisciplinary scheduling arena.
Very important for this advancement has been the positive
interaction of early work with the studies on Constraint
Satisfaction (CSP) or Constraint Programming. The dis-
tinctions between modeling (variable and constraints), de-
ductions (propagation rules) and decisions (heuristic rea-
soning and choices) contributed to clarify various aspects
related to the integration of techniques, thus allowing us to
solve increasingly complex scheduling problems.
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Operator: Move_to
Parameters: ?vehicle ?from ?to
Preconds: (at ?vehicle ?from) (road ?from ?to)
Effects: (at ?vehicle ?to) at ?vehicle ?from)

Operator: load
Parameters: ?vehicle ?obj ?place
Preconds: (at ?obj ?place) (at ?vehicle ?place)
Effects: (into ?vehicle ?obj) not(at ?obj ?place)

Operator: unload
Parameters: ?vehicle ?obj ?place
Preconds: (into ?vehicle ?obj) (at ?vehicle ?place)
Effects: (at ?obj ?place) not(into ?vehicle ?obj)

Figure 1: A simple domain

P&S Applications. Although its origins can be attributed
to distinct groups of people, research in P&S has merged
into AI to shape a unique Þeld of study. Instrumental in
the integration of efforts has been the emergence of a num-
ber of application areas in which there is no or very little
distinction between causal reasoning, i.e., how to synthe-
size a plan which achieves a goal (planning), and how to
allocate resources for the plan (scheduling). These two as-
pects of problem solving were not separated but part of a
continuum, and the emergence of these domains led to a
dedicated research line which is quite complementary to
the integration of ÒclassicalÓ P&S techniques. For exam-
ple, a leading application area for this Þeld is space mission
support, and one of the most notable projects in this are has
been the DS-1 Experiment in 1999 [31] that showed how
AI planning and scheduling technology can be integrated
in a closed loop for autonomous control of a spacecraft in
deep space. The experiment shows how the synthetic as-
pect of planning, deciding what to do, cannot be easily sep-
arated from reasoning on a continuous temporal evolution,
e.g., complex temporal constraints, and on the availability
of on-board resources for accomplishing the plan.

2 The Classical Planning Problem

A planning problem, according to the formulation usually
referred to as classical planning, is the problem of Þnd-
ing a sequence of actions, or instances of operators, which
transforms an initial state into the desired goal state of the
world. More formally, a planning problem is given by a
4-ple (A, I,O,G), where A is a set of ßuents, or proposi-
tions, used to characterize states. A planning state s ∈ S
is an assignment of truth values to ßuents s : A → {T, F}
which describes a state of affairs in the domain. I and
G respectively describe the initial and goal state. O is a
set of operators o ∈ O which transform states into states
o : S → S. A prominent feature which is common to most
planning models is the description of domain operators in
terms of preconditions and effects. Operator preconditions
are logical formulae over ßuents, which must be veriÞed
before the action is executed, while effects establish which
conditions hold on ßuents after action execution.

An Example. Suppose that we are modeling a trans-
portation planning domain where three operators, namely
move to, load and unload are available, respectively de-

Figure 2: Initial and Þnal states

scribing movements of vehicles between cities, and load-
ing/unloading of objects on vehicles. A possible precon-
ditions/effects description of operator move to is given in
Fig. 1. It establishes that a vehicle can move from a start-
ing location to a destination, if the vehicle is at the starting
point and there exists a road connecting the two locations.
The effect, i.e. the consequence, of executing the action is
that the vehicle is no longer at the starting position, while,
in the new state, it is at the destination location. Similarly,
load establishes that an object can be loaded into a vehicle
if it is in the same location as the vehicle, thus making the
property into hold between the object and the vehicle. The
unload operator describes the opposite state transforma-
tion. It should be noted that some properties, such as road,
are not mentioned in the effects, meaning that the corre-
sponding ßuent values persist in the next state. A problem
instance for this domain could be given by an initial state
which describes a road map of connections, objects and
vehicles distributed among locations. For instance, let the
initial state be the following
I={ (road_A_B) (road_B_C) (road_B_D)

(road_B_A) (road_C_B) (road_D_B)
(at_car1_A) (at_obj1_D) (at_obj2_C) }

and the goal state
G={ (at_obj1_C) (at_obj2_C) (at_car1_A) }

which requires that in the Þnal state all objects must be
in location C and car1 is back in the initial location A.
The initial state and the required Þnal goal state of the
world are illustrated in Fig. 2. Despite the simplicity of the
modeling formalism, the preconditions/effects approach is
fairly general since quite diverse domains can be described.
However, it has to be pointed out that the classical charac-
terization of planning we have just described is based on
some underlying simplifying hypotheses: the closed world
assumption, i.e. the initial state of the world is completely
known to the planner; atomic time and sequential actions,
i.e., executing an action causes a state transition which is
considered atomic and instantaneous, because the model
does not describe what is happening during its execution,
thus the only signiÞcant relation among actions is prece-
dence; deterministic effects, i.e., there is no uncertainty
about action execution Ñ once an action is executed the
next state is completely determined by its effects, so ac-
tions cannot fail and external events are not possible since
a state change cannot happen without an action causing it.
Several research works are proposing extensions in order
to overcome the limits and the applicability of the classical
model to real world problems.
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Extending the basic model. One important extension
consists in introducing into planning models the ability to
manage resources and time constraints by attaching num-
bers and metric quantities to action descriptions. The idea
is to extend the concept of planning state by introducing
numerical variables, which represent the state of resources
and other costs, and extending, accordingly, the concept
of numerical preconditions and numerical effects, the lat-
ter establishing how the variables are updated as a conse-
quence of action execution. For instance, the description
of operator move to can be enriched with a numerical pre-
condition about the metric quantities fuel and distance as
(distance ?from ?to ?km)
(> (fuel ?vehicle) (multiply ?km 1/8))

which requires to have enough fuel before applying the ac-
tion. Moreover the numerical effect
(decrease(fuel ?vehicle)(multiply ?km 1/8))
(increase elapsed_time (divide ?km 50))

establishes how to decrease the fuel amount and how to
compute the total elapsed execution time, assuming, for
instance, a consumption of 8 litres per kilometer, and an
average speed of 50 km/h. Similarly, making reference to
starting/ending instants of actions allows to describe so-
phisticated scheduling constraints and goals in the plan-
ning problem. For instance, a possible numerical goal
could be
G={(at_obj1_C)
(>= (minus (end_move_AB) (start_moveAB) 1/2)
(>= (fuel_car1) 40)}

which requires to move obj1 at location C from A to B in
less than half an hour, and still having at least 40 litres of
fuel at the end of the plan. A quite natural further exten-
sion, derived from the introduction of numerical quantities,
is to see planning as an optimization problem, in which one
wants to obtain an admissible solution plan, i.e. it reaches
the goals, and minimize/maximize some linear or nonlin-
ear metric of costs or utilities, such as for instance
minimize(10*elapsed_time - 2*fuel_car1)

Moreover many planning models extend the expressive-
ness of the language with the possibility of using both
quantiÞers, e.g., using goal expressions like
(for_each ?obj (at C ?obj)),

conditional effects, and abstract action descriptions, where,
for instance, the operator transfer to is an abstraction of
more detailed operators such as drive to and ßight to.
Time is devoted a special treatment in the extensions pro-
posed to classical planning. Models exist which allow: ac-
tion duration, parallelism, complex temporal constraints,
external timed events and continuous time dependent quan-
tities.

A further issue in planning has concerned the speciÞ-
cation of explicit search control knowledge. The most
used approach in this respect are Hierarchical Task Net-
work (HTN) models [19, 20]. HTN is based on the notion
of activity decomposition. The domain knowledge pro-
vided in HTN models describes how complex high level
tasks can be decomposed into inter-related subtasks down
to primitive tasks, e.g., the abstract task of Òtransferring
objects from one place to anotherÓ is decomposed into the

sequence of subtasks: Òload objects into a vehicleÓ, Òtrans-
port to destinationÓ and Òunload themÓ. A HTN planner
is submitted some high level task as a goal, and the plan
synthesis consists in a continuous activity of subtask ex-
pansions and plan reÞnement until a consistent network
of primitive actions is obtained. HTN planners have been
used successfully as the base of many practical planning
systems, because they entail the Òhow toÓ procedural vi-
sion of the domain expert and the consequent limitation of
search from Þrst principles that characterizes the classical
approaches. Their excellent performance is mainly due to
the fact that procedural knowledge is encoded into the de-
composition hierarchy. On the other hand, a drawback of
HTN planners is the reduced ßexibility, since they are un-
able to handle tasks that were not explicitly anticipated by
the designer, even if the available primitive actions are suf-
Þcient for constructing a suitable solution plan.

Research progression. Research in planning evolved sig-
niÞcantly over the last 20 years. At least two aspects are
worth reminding, namely the introduction of the concept of
planning graph [5], and the idea of planning as satisÞability
[29, 30]. In the work of Blum and Furst [5] the classical
idea of search in the state space is revived by a success-
ful planner, Graphplan, which signiÞcantly outperformed
any previous partial order planner. Graphplan certainly ex-
ploited the increased availability of memory and comput-
ing resources, but its key point was a very powerful struc-
ture, the planning graph. The planning graph can be seen
as a very compact form of reachability tree [28], which
represents the search space and some structural constraints
of the problem until a Þxed depth k. In the original work,
the solution plan is extracted with a backward depth Þrst
search. Graphplan generated a huge amount of work (an
example is [1]) concerning algorithms for solution extrac-
tion ranging from forward search to non-directional and
heuristic search, as well as techniques for preprocessing,
compacting and extending the planning graph structure.
While previous research has been biased by a constructive
approach to plan synthesis, the key idea in Graphplan con-
sists in unfolding the domain theory into a specialized data
structure and in the development of search techniques that
reason on what is Òin the domainÓ and not only on what
is Òin the current planÓ. The work of Kautz and Selman
[29] marked the Þrst idea of solving planning by reduction
to another known problem, namely the propositional sat-
isÞability problem (SAT). Exploiting, again, the planning
graph, it was possible to devise Blackbox [30], a planner
which iteratively transformed each expansion of the plan-
ning graph into a propositional formula and submits it to
a SAT solver. A satisfying assignment of the formula rep-
resents a solution plan, and iterative expansion/encoding
steps either yield a plan or a termination condition sig-
nifying that no plan exists is eventually reached. Using
a standard representation for the formula, any available
SAT solver from a standard library can be employed as
a planner. Many techniques for propositional encoding of
planning problems have been proposed by various authors.
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Disregarding the theoretical aspects of planning as SAT,
the remarkable contribution of Blackbox has been the gen-
eral idea of approaching planning by problem reduction
techniques. The Blackbox approach, in fact, decomposes
the problem of planning into the two distinct sub-problems
of Þnding the best encoding, and Þnding the best solver.
Moreover, in a problem reduction scheme, the planner ben-
eÞts from the improvements and research results in the tar-
geted solvers. Successively, the problem reduction scheme
has been used in several lines of planning research: CSP
encoding has been extensively applied to planning [44, 17],
as well as reduction to Integer Linear Programming (ILP)
for planning with metric constraints and optimization goals
[6, 45]. A further encoding uses model-checking tech-
niques, e.g., [12, 18].

Addressing nondeterministic. Relaxing the closed world
and deterministic assumptions of the classical approach
has major consequences in the planning model, and in the
same notion of solution plan. More realistic hypotheses
can be assumed: actions can fail during execution; ac-
tions cannot produce the expected effects; the state of the
world is not completely known, and it can change in an
unpredictable way due to events which are not under the
control of the planner. Moreover, we should assume the
capacity of sensing the world during planning execution.
Under these hypotheses a solution plan cannot be a pre-
determined sequence of actions, but it should reßect the
possible courses of execution. This is the case of con-
tingency planning models which extend the classical ap-
proach by building solution plans with conditional con-
structs for the various contingencies which can be detected
during the execution. Following this same idea, a bulk
of research concerned the coupling of planning and exe-
cution, e.g., [33], the synthesis of Òuniversal plansÓ [40],
a variant of the planning problem known as conformant
planning [41, 13, 9], or planning with incomplete informa-
tion and sensing [38, 14, 37]. All of them introduce into the
classical framework the issues of robustness of a plan with
respect to ÒexpectedÓ contingencies during execution. A
fairly different approach to planning with uncertainty is to
model the probabilistic nature of transitions between states
by the widely used techniques of Markov Decision Pro-
cesses (MDPs) [15, 8]. The action outcomes are labeled
with their respective probabilities, and the notion of plan is
represented in these models by the concept of policy, i.e., a
decision structure which speciÞes which action should be
taken in any possible situation. Models based on Partially
Observable MPDs (POMDPs) allow us to manage situa-
tions where, as in the real cases, limited sensors and cost
of sensing activity does not allow a complete observabil-
ity of the resulting state. MDP and POMDP based plan-
ners face the main difÞculty of the size of the state space,
and an inadequate representation of time which is gener-
ally assumed to be atomic. However these techniques have
proven to be useful and effective in some speciÞc domains
such as robot navigation tasks.

The planning competition. The Þrst planning competi-
tion was held in 1998 and driven by Drew McDermott,
who also led the effort to synthesize the Þrst release of
PDDL [35] as an interlingua to allow the comparison of
planners on the same problems and domains. For the Þrst
time planners become comparable in a measurable way, al-
beit on an extension of the classical model. In later work
PDDL has been signiÞcantly extended to deal for example
with durative actions and numeric variables, and more re-
cently to include preferences and plan constraints Ñ see
the site http://zeus.ing.unibs.it/ipc-5/ for details. Since
2004, a competition on nondeterministic domains is also
held. A clear positive effect of the competition has been
the improvement of performance of planning systems and
the fostering of innovative ideas. As an example it is worth
mentioning a number of planners that have shown excel-
lence in the various IPCs, and afterwards have been inßu-
ential for the whole area, such as HSP [7], FF [27], LPG
[25], CPT [46] and others. A side effect of the success of
the IPC could be the focalization of research topics around
issues relevant to the advancements of the competition with
a decrease of intellectual efforts on a number of connected
research topics. In particular the bias represented by the
speciÞc language used in the competition can limit some
of the possible developments on generalized planning lan-
guages for real world applications.

3 Constraint-Based Scheduling

A complete account of scheduling techniques is outside the
scope of this paper. We here present shortly the problem,
a single example of state of the art AI scheduling technol-
ogy, and then provide some comments with respect to the
integration with planning techniques.

A scheduling problem. Scheduling is primarily con-
cerned with Þguring out when a set of predeÞned tasks
should be executed so that the Þnal solution guarantees
ÒgoodÓ performance relatively to the optimization of an
objective function. Let us focus on a family of problems
known as project scheduling, whose main elements are the
following: (a) a set A = {a1, . . . , an} of activities or
tasks. Every activity is characterized by a processing time
pi; (b) a set R = {r1, . . . , rm} describing the resources
required to execute the activities. The execution of each
activity ai can require an amount reqik of resource rk dur-
ing its processing time. Various kinds of resources can be
taken into account: disjunctive or cumulative, renewable or
consumable, among others; (c) constraints: the constraints
are rules that limit the possible allocations of the activi-
ties. They can be divided into two types: (1) resource con-
straints limit the maximum capacity of each resource. For
example, there may only be a certain number of machines
or people available to work on some activities at any given
time; (2) temporal constraints impose limitations on the
times in which activities can be scheduled. A binary con-
straint is imposed between two activities, for instance in or-
der to mutually bind the instant of occurrence of their start
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times. Such constraints are often formulated as bounds on
differences between activity start/end time points [16]. A
scheduling problem consists in computing a consistent as-
signment of start and end times for each activity satisfying
both resource and temporal constraints while optimizing a
certain evaluation function, e.g., the early Þnish time of the
whole set of activities or makespan. The particular con-
straints expressed in project scheduling problems are in-
teresting because they allow to model a quite broad range
of real domains that require modeling causal relations be-
tween activities, coordination between multiple steps, and
a rich variety of time and resource constraints.

CSPs and scheduling. Scheduling problems are very hard
problems: for instance, simple scheduling problems like
job-shop scheduling are NP-hard [24]. Therefore, schedul-
ing represents an important application for constraint di-
rected search. A Constraint Satisfaction Problem (CSP)
consists of a network of constraints deÞned over a set of
variables where a solution is an assignment to the vari-
ables that satisÞes all constraints. Constraint Programming
is an approach to solving combinatorial optimization prob-
lems based on the CSP representation [34]. The framework
involves the combination of sophisticated search technol-
ogy and constraint propagation. Constraint propagation ac-
tively uses constraints to prune the search space. These
propagation techniques are generally polynomial w.r.t. the
size of the problem, and aim at reducing the domains of
variables involved in the constraints by removing the val-
ues that cannot be part of any feasible solution. Various
techniques with distinct pruning power can be deÞned for
different types of constraints. The search for a solution
to a CSP can be viewed as modifying a constraint graph
by adding and removing constraints, where the constraint
graph is an evolving representation of the search state, and
a solution is a state with a single value remaining in the
domain of each variable, and all constraints are satisÞed.
Several constraint programming approaches have been de-
veloped in this direction. For instance, the reader can re-
fer to [2] for a thorough analysis of constraint-based tech-
niques for scheduling problems. The work of constraint-
directed scheduling of the 80s (see for example [42, 39])
developed into Constraint-based Scheduling approaches in
the late 90s (see for example [36, 3]). These approaches
are based on the representation of a scheduling problem
and the search for a solution to it by focusing upon the
constraints in the problem. A typical formulation of the
problem is that of Þnding a consistent assignment of start
times for each goal activity. Under this model, decision
variables are time points that designate the start times of
various activities and CSP search focuses on determining
a consistent assignment of start time values.

Precedence constraint posting. Other approaches to
scheduling operate with a problem formulation more akin
to least-commitment frameworks. According to this
formulation, referred to as Precedence Constraint Post-
ing [43, 11], the goal is to post sufÞcient additional prece-
dence constraints between pairs of activities for the pur-

Figure 3: Precedence Constraint Posting Schema

pose of pruning all inconsistent allocations of resources to
activities. This short section shows a basic method to gen-
erate solutions to project scheduling proposed in [11] for
problems with binary resources, and then extended to more
general problems in later work, e.g., [10]. It is is based on
the fact that the relevant events on a scheduling problem
can be represented as a temporal CSP, usually called Sim-
ple Temporal Problem (STP) [16].

The search schema used in this approach focuses on de-
cision variables which represent conßicts in the use of the
available resources; the solving process proceeds by or-
dering pairs of activities until all the current resource vi-
olations are removed. This approach is usually referred
to as the Precedence Constraint Posting (PCP) because it
revolves around imposing precedence constraints to solve
the resource conßicts, rather than Þxing rigid values to the
start times. The general schema of these approaches is de-
scribed in Fig. 3. It consists in representing, analyzing, and
solving various aspects of the problem in two separate lay-
ers, namely the temporal layer and the resource layer. In
the former, the temporal aspects of the scheduling problem
like activity durations, constraints between pairs of activi-
ties, due dates, release time, etc., are considered. The lat-
ter represents and reasons upon the resource aspects of the
problem.

Reasoning on time and resource constraints. The
temporal aspects of scheduling problems are represented
through an STP (simple temporal problem) network [16].
This is a temporal graph in which the set of nodes repre-
sents a set of temporal variables named time points, tpi,
while temporal constraints, of the form tpi − tpj ≤ dij ,
deÞne the distances among them. Each time point has ini-
tially a domain of possible values equal to [0,H] where
H is the horizon of the problem (H can be inÞnite). The
problem is represented by associating with each activity a
pair of time points which represent, respectively, the start
and the end time of the activity. A temporal constraint
between two time-points may deÞne either ordering con-
straints between two activities (when the two time-points
do not belong to the same activity) or activity durations
(when the two time-points belong to the same activity).
By propagating the temporal constraints, it is possible to
bound the domains of each time point, tpi ∈ [lbi, ubi]. In
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the case of empty domains for one or more time points
the temporal graph does not admit any solution. The STP
propagation is polynomial [16]. The temporal layer main-
tains in polynomial time (using constraint propagation) a
set of solutions deÞned by a temporal graph. This result
is taken as input by the second layer. The resource layer
takes into account the other aspect of the scheduling prob-
lem, namely resources. The problem is that there are con-
straints on resource utilization (i.e., capacity). Resources
can be single- or multi-capacity, and reusable or consum-
able. The input of this layer is a temporally ßexible so-
lution Ñ a set of temporal solutions. Like in the previ-
ous layer, it is possible to use constraint propagation (i.e.,
resource propagation) to reduce the search space. Even
though there are several methodologies described in the
literature (e.g., see [36, 32]) these are not sufÞcient in gen-
eral. In fact they are not complete, that is, they are not able
to prune all inconsistent temporal solutions. Therefore, it
is necessary to introduce a method for deciding among the
possible alternatives. For this reason a PCP procedure uses
a Resource ProÞle to analyze resource usage over time and
detect periods of resource violations and the set of activi-
ties, or contention peaks, which create this situation. The
procedure then proceeds to post additional constraints on
the time layer to level (or solve) one or more detected con-
tention peaks. These new constraints are propagated in the
time layer to check the temporal consistency. Then the
time layer provides a new temporally ßexible solution that
is analyzed again using the resource proÞles. The search
stops when either the temporal graph becomes inconsis-
tent or the resource proÞles are consistent with the resource
capacities. The outcome of a PCP solver is a STP that
not only contains the temporal constraints belonging to the
initial problem, but also the additional precedences which
have been added during the resolution process. If we ob-
serve Fig. 3 at a higher level of abstraction we may say that
solving a scheduling problem can be seen as the problem
of synthesizing temporal evolutions of the resource pro-
Þles that are consistent with all the problem constraints. In
addition, the PCP method shows quite well how the pro-
cess of solving a scheduling problem consists in reasoning
on time and resource constraints in order to Òcreate spaceÓ
on the resource allocation of activities with the aim of rul-
ing out contention peaks. This Òpeak-ßatteningÓ procedure
represents the combinatorial core of the scheduling pro-
cess. Given its high computational complexity, peak ßat-
tening is carried out with incomplete algorithms.

Integrating planning and scheduling. Going back to how
the current temporal planners represent resources, that is
by means of numeric variables, it is possible to see what is
missing to exactly integrate the two types of reasoning into
more powerful solvers. The main activity of planners con-
sists of deciding action selection, while Òcreating spaceÓ
on resources cannot be reasoned upon explicitly and is con-
sidered somehow a side effect of the planning activity. As a
consequence, for problems strongly characterized by com-
plex resource constraints, the performance of current plan-

ner somehow relies on search tools that reason on planning
knowledge and, as a consequence, are not tailored for re-
source reasoning. This is an area for further research to
create a generation of solvers that take complete advantage
from both research traditions.

4 Current Research Scenario

The current research arena has more ramiÞcations with re-
spect to those described here. In particular, most of the
current efforts focus on the problem with planning in non-
deterministic domains and a signiÞcant part of the com-
munity is interested in developing techniques for either
decision-theoretic, probabilistic and conformant planning
with several combinations of those features. These re-
search directions require a speciÞc survey. A scheduling
counterpart of these efforts is concerned with schedule ro-
bustness, a topic that is attracting increasing research. Re-
lated to this is the problem of P&S and execution, an issue
which is relevant for all applications connected to auton-
omy. A set of issues are connected to the problem of cre-
ating P&S technology which is deployable to solve real-
world problems. In this context, a few very important top-
ics which are somewhat under-addressed are knowledge
acquisition, knowledge engineering, validation and reÞne-
ment, as well as problems connected with user-interaction,
such as mixed-initiative problem solving and automated
explanation generation. In general, there is an increasing
awareness of the fact that, in order to include P&S in real
domains, research should not be centered only on search
control but it should also focus on a more general approach
to the problem of plan life-cycle management.
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